pyLife Documentation
Release 2.0.0

pyLife Developer Team

Feb 22, 2022

pyLife — a general library for fatigue and reliability

1.1 Purpose of the project
1.2 Status oL e
1.3 Contents o e e e e
1.4 License e

Installation / Getting started

2.1 Justaglimpse
2.2 InstallationtousepyLife
2.3 Installation to develop pyLife
Tutorials

3.1 The WoehlerCurve datastructure
3.2 Load Collectives and Load Histograms
3.3 The concept of stress and strength
pyLife User guide

41 OVerview o i e e e e e
42 General Concepts v v v i e e e
pyLife Cookbook

5.1 Lifetime Calculation
5.2 Ramberg Osgood relation
5.3 Wohler analyzing functions L.
5.4 Hotspot calculationdemo,
5.5 Stress gradient calculation L. L oL
5.6 Localstressapproach.
5.7 PSDOptimizer
5.8 Timeserieshandling L.
pyLife Reference

6.1 General
6.2 SHESS e e
6.3 Strength.
6.4 Materiallaws L
6.5 Materialdata
6.6 Meshutilities L
6.7 VMAPInterface
6.8 Utils e

What is new and what has changed in pyLife-2.0

ABOUT

DO = = =

A W W W

7.1
7.2
7.3
7.4
7.5

General changes L e e e e e e e e
New features o e e e
Restructuring thecode L e
Changes that affect yourcode
Variable names e e e e e e e e e

8 Contributing

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Test driven development L e e e e e e e
Coding style e
Making commitso e e e e e e e e
Branching and pull requests L L e e e e e
License o e e
Add /retain copyright notices L. e
Signyour work e e e e e
Maintain Copyright holder / Contributor list,

9 pyLife coding style guidelines

9.1
9.2
9.3
9.4
9.5

Introduction L e e e e
Use a linter and let your editor helpyou o
Linelengths e e e e e e e e
Naming conventions i i e e e e e e e e e e e e e e e e e
Structuring of the code e

10 pyLife’s variable name conventions
10.1 Preamble

11 Authors

12 License

13 3rd Party Licenses

14 Indices and tables

Python Module Index

Index

141
141
141
142
142
142
143
143
144

145
145
145
145
146
147

151
151
151
152

153

155

161

163

165

167

CHAPTER
ONE

PYLIFE — A GENERAL LIBRARY FOR FATIGUE AND RELIABILITY

pyLife is an Open Source Python library for state of the art algorithms used in lifetime assessment of mechanical
components subject to fatigue load.

1.1 Purpose of the project

This library was originally compiled at Bosch Research to collect algorithms needed by different in house software
projects, that deal with lifetime prediction and material fatigue on a component level. In order to further extent and
scrutinize it we decided to release it as Open Source. Read this article about pyLife’s origin.

So we are welcoming collaboration not only from science and education but also from other commercial companies
dealing with the topic. We commend this library to university teachers to use it for education purposes.

1.2 Status

pyLife-2.0.0 has been released. That means that for the time being we hope that we will not introduce breaking changes.
That does not mean that the release is stable finished and perfect. We will do small improvements, especially with re-
spect to documentation in the upcoming months and release them frequently as 2.0.x releases. Once we have noticeable
feature additions we will come up with a 2.x.0 release. No ETA about that.

1.3 Contents

There are/will be the following subpackages:

* stress everything related to stress calculation

equivalent stress

stress gradient calculation

rainflow counting
* strength everything related to strength calculation
— failure probability estimation

— S-N-calculations

https://mybinder.org/v2/gh/boschresearch/pylife/master?filepath=demos%2Findex.ipynb
https://pylife.readthedocs.io/en/latest/?badge=latest
https://pypi.org/project/pylife/
https://github.com/boschresearch/pylife/actions?query=workflow%3Atestsuite
https://www.bosch.com/research/
https://www.bosch.com/stories/bringing-open-source-to-mechanical-engineering/

pyLife Documentation, Release 2.0.0

* mesh FEM mesh related stuff
— stress gradients
— FEM-mapping
— hotspot detection
* util all the more general utilities
* materialdata analysis of material testing data
— Wohler (SN-curve) data analysis
* materiallaws modeling material behavior
— Ramberg Osgood
— Wohler curves

e vmap a interface to VMAP

1.4 License

pyLife is open-sourced under the Apache-2.0 license. See the LICENSE file for details.

For a list of other open source components included in pyLife, see the file 3rd-party-licenses.txt.

2 Chapter 1. pyLife — a general library for fatigue and reliability

https://www.vmap.eu.com/

CHAPTER
TWO

INSTALLATION / GETTING STARTED

2.1 Just a glimpse

If you just want to check out pyLife’s demos, you can use the our notebooks at mybinder. We will add new notebooks
as soon as we have new functionality.

2.2 Installation to use pyLife

2.2.1 Prerequisites

You need a python installation e.g. a virtual environment with pip a recent (brand new ones might not work) python
versions installed. There are several ways to achieve that.

Using anaconda

Install anaconda or miniconda [http://anaconda.com] on your computer and create a virtual environment with the pack-
age pip installed. See the conda documentation on how to do that. The newly created environment must be activated.

The following command lines should do it

conda create -n pylife-env python=3.9 pip --yes
conda activate pylife-env

Using virtualenv

Setup a python virtual environment containing pip according to these instructions and activate it.

Using the python installation of your Linux distribution

That’s not recommended. If you really want to do that, you probably know how to do it.

https://mybinder.org/v2/gh/boschresearch/pylife/master?filepath=demos%2Findex.ipynb
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.python.org/3/tutorial/venv.html

pyLife Documentation, Release 2.0.0

2.2.2 pip install

The simplest way to install pyLife is just using the pip package

pip install pylife[all]

That installs pyLife with all the dependencies to use pyLife in python programs. You might want to install some further
packages like jupyter in order to work with jupyter notebooks.

There is no conda package as of now, unfortunately.

2.3 Installation to develop pyLife

For general contribution guidelines please read CONTRIBUTING.md

2.3.1 Clone the git repository

Depending on your tools. From the command line

git clone https://github.com/boschresearch/pylife.git

will do it.

2.3.2 Install the dependencies
Install anaconda or miniconda [http://anaconda.com]. Create an anaconda environment with all the requirements by
running

Create an environment — usually a good idea to use a prefixed environment in your pyLife working directory and activate
it.

conda create -p .venv python=3.9 pip --yes
conda activate ./.venv

Then install the pyLife into that environment.

pip install -e .[testing,all]

2.3.3 Test the installation

You can run the test suite by the command

pytest

If it creates an output ending like below, the installation was successful.

228 passed, 1 deselected, 13 warnings in 30.45s

There might be some DeprecationWarnings. Ignore them for now.

4 Chapter 2. Installation / Getting started

[17:

[2]:

[2]:

[3]:

[3]:

[4]:

CHAPTER
THREE

TUTORIALS

This section contains tutorials that teach the use of pyLife and its principles. As opposed to the pyLife Cookbook it
does not show actual workflows.

3.1 The WoehlerCurve data structure
The “WoehlerCurve <https://pylife.readthedocs.io/en/latest/materiallaws/woehlercurve.html>"__ is the basis of
pyLife’s fatigue assessment functionality. It handles pandas objects containing data describing a Wohler curve.

import pandas as pd

import numpy as np

from pylife.materiallaws import WoehlerCurve
import matplotlib.pyplot as plt

3.1.1 The very basic Woéhler curve data

The basic Wdhler curve is a pandas.Series that contains at least three keys, * SD: the load level of the endurance
limit * ND: the cycle number of the endurance limit * k_1: the slope of the Wohler Curve

woehler_curve_data = pd.Series({

'SD': 300.,
'ND': 1.5e6,
'k_1': 6.2,
19)
woehler_curve_data
SD 300.0
ND 1500000.0
k_1 6.2

dtype: float64

wc = WoehlerCurve(woehler_curve_data)
#wc = woehler_curve_data.woehler (alternative way of writing it)
wc.SD, wc.ND, wc.k_ 1

(300.0, 1500000.0, 6.2)

cycles = np.logspace(l., 8., 70)
load = wc.basquin_load(cycles)

(continues on next page)

https://pylife.readthedocs.io/en/latest/materiallaws/woehlercurve.html

pyLife Documentation, Release 2.0.0

(continued from previous page)

plt.loglog()
plt.plot(cycles, load)

[4]: [<matplotlib.lines.Line2D at 0x7£f750be36700>]

2= 108

10° 1

6w 10°

4x 10

Ix10¢

1ot 1 10¢ 1 10® 108 107 10#

3.1.2 Optional parameters

The second slope k_2

You can optinally add a second slope k_2 to the Wohler curve data which is valid beyond ND.

[5]: woehler_curve_data = pd.Series({

'SD': 300.,
'ND': 1.5e6,
'k_1': 6.2,
'k_2': 13.3

D)
plt.loglog()
plt.plot(cycles, woehler_curve_data.woehler.basquin_load(cycles))

[5]: [<matplotlib.lines.Line2D at 0x7£f7509a2eeb®>]

6 Chapter 3. Tutorials

[6]:
[6]:

[77:

[8]:
[8]:

pyLife Documentation, Release 2.0.0

1|}3 4

1t 1 10° 10 10® 10® 107 10#

The failure probability and the scatter values TN and TS.

As everyone knows, material fatigue is a statistical phenomenon. That means that the cycles calculated for a certain
load are the cycles at which the specimen fails with a certain probability. By default the failure probability is 50%.

woehler_curve_data.woehler. failure_probability
0.5
You can provide values for the scattering of the Wohler curve:

woehler_curve_data = pd.Series({

'SD': 300.,
'ND': 1.5e6,
'k_1': 6.2,
'"TS': 1.25,
'"TN': 4.0

i)

Now you can then transform this Wohlercurve to another failure probability:

woehler_curve_data.woehler.transform_to_failure_probability(0.9).to_pandas()

SD 3.354102e+02
ND 1.502105e+06
k_1 6.200000e+00
TS 1.250000e+00
TN 4.000000e+00
k_2 inf

failure_probability 9.000000e-01
dtype: float64

As convenience you can provide the failure probability as a optional parameter to the basquin_load() and
basquin_cycles() methods.

3.1. The WoehlerCurve data structure 7

pyLife Documentation, Release 2.0.0

[9]: wc = WoehlerCurve(woehler_curve_data)
plt.loglog()
for fp in [0.1, 0.5, 0.9]:
plt.plot(cycles, wc.basquin_load(cycles, failure_probability=£fp), label="%f" % £fp)

plt.legend()
[9]: <matplotlib.legend.Legend at 0x7£7509ad29d0>

= 0.100000
., 0500000
\ —— 0900000

1I}3 -

1t 1 10® 10 1 1n® 107 10#

3.2 Load Collectives and Load Histograms

From the load (stress) side pyLife provides the classes LoadCollective and LoadHistogram to deal with load col-
lectives. LoadCollective contains individal hysteresis loops whereas LoadHistogram contains a 2D-histogram of
classes of hysteresis loops and the number of cycles with which they occur.

[1]: import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import pylife.stress.timesignal as TS
import pylife.stress.rainflow as RF
import pylife.strength.meanstress as MS
import pylife.strength.fatigue
plt.rcParams['figure.figsize'] = [12, 7.5]

8 Chapter 3. Tutorials

[2]:

[2]:

[3]:

[3]:

[4]:

[4]:

pyLife Documentation, Release 2.0.0

3.2.1 A simple load signal

Let’s take a look at a really simple load signal:

load_signal = np.array([0®., 2.0, -2.0, 1.0, -1.0, 2.0, -2.0, 1.0, -1.0, 2.0, -2.0, 1.0, -
1.0, 2.0, 0.]1)
plt.plot(load_signal)

[<matplotlib.lines.Line2D at 0x7f1f1b662eb0®>]

20

15

10

05

0.0

-1.0

-15

Now let’s perform a rainflow analysis.

detector = RF.FourPointDetector(recorder=RF.LoopValueRecorder())
detector.process(load_signal)

<pylife.stress.rainflow.fourpoint.FourPointDetector at 0x7f1£195ef790>

The detector now contains the recorder which recorded the hysteresis loops for us. The simple load collective comes
as a attribute of the detector:

collective = detector.recorder.collective

collective
from to
® 1.0 -1.0
1 -2.0 2.0
2 1.0 -1.0
3 -2.0 2.0
4 1.0 -1.0

As you can see, the rainflow analysis found five histresis loops, three from 1.0 to -1.0 and two from -2.0 to 2.0. Alter-
natively you can ask the recorder for a load histogram:

3.2. Load Collectives and Load Histograms 9

[5]:

[5]:

pyLife Documentation, Release 2.0.0

histogram = detector.recorder.histogram(bins=6)

histogram
from

(-2.0, -1.5]
(-1.5, -1.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]

dtype: float64

to

(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]

[I — R — I — I — R VN — A A — A — A — A — I — I — = R A — A — I — A — I — I — I — B — B — B — I — I — I — I S — I — I — B — =

[I — N — R — I — A — A A N — A A — N — N — I — A= A A A — A — A — N — N — A — A — N — A A= A — A — I — I — I — I — I~]

This is a bit hard to read. What you see is a pands. Series that has a two dimensional IntervalIndex as index. The
histogram is all empty except the two classes from: (-2.0, 1.5] to: (1.5, 2.0] has 2.0 cycles and from: (0.5, 1.0] to:
(-1.0, -1.5] has 3.0 cycles. Tose correspond to the two loops from -2.0 to 2.0 and the three loops 1.0 to -1.0.

10

Chapter 3. Tutorials

pyLife Documentation, Release 2.0.0

3.2.2 Working with load collectives and load histograms

A load collective and a load histogram can be processed by the two classes LoadCollective and LoadHistogram.
Both inherit from the common base class AbstractLoadCollective. There is the common accessor attribute
load_collective that convert a pandas object with the load collective resp. load histogram data into the corre-
sponding class.

First let’s look at a load collective. You can easily calculate the amplitude of each hysteresis loop:

[6]: cl = collective.load_collective
cl.amplitude

[6]: O 1.0
1 2.0
2 1.0
3 2.0
4 1.0

Name: amplitude, dtype: float64

Same for the mean stress and the R-value:

[7]: cl.meanstress, cl.R

[7]: (® 0.0

1 0.0
2 0.0
3 0.0
4 0.0
Name: meanstress, dtype: float64,
® -1.0
1 -1.0
2 -1.0
3 -1.0
4 -1.0

Name: R, dtype: float64)

There is also the attribute cycles:

[8]: cl.cycles

[8]: O 1.0
1 1.0
2 1.0
3 1.0
4 1.0

Name: cycles, dtype: float64

As you can see, the cycles are all 1.0 because we have an entry for each indivudual hysteresis loop which by definition
occurs only once.

Now let’s take a look at the histogram:

[9]: hi = histogram.load_collective
hi.amplitude, hi.meanstress, hi.R

[9]: (from to
(-2.0, -1.5] (-1.0, -0.5] 0.50

(continues on next page)

3.2. Load Collectives and Load Histograms 11

pyLife Documentation, Release 2.0.0

(continued from previous page)

(-0.5, 0.0] 0.75
(0.0, 0.5] 1.00
(0.5, 1.0] 1.25
(1.0, 1.5] 1.50
(1.5, 2.0] 1.75
(-1.5, -1.0] (-1.0, -0.5] 0.25
(-0.5, 0.0] 0.50
(0.0, 0.5] 0.75
(0.5, 1.0] 1.00
(1.0, 1.5] 1.25
(1.5, 2.0] 1.50
(-1.0, -0.5] (-1.0, -0.5] 0.00
(-0.5, 0.0] 0.25
(0.0, 0.5] 0.50
(0.5, 1.0] 0.75
(1.0, 1.5] 1.00
(1.5, 2.0] 1.25
(-0.5, 0.0] (-1.0, -0.5] 0.25
(-0.5, 0.0] 0.00
(0.0, 0.5] 0.25
(0.5, 1.0] 0.50
(1.0, 1.5] 0.75
(1.5, 2.0] 1.00
(0.0, 0.5] (-1.0, -0.5] 0.50
(-0.5, 0.0] 0.25
(0.0, 0.5] 0.00
(0.5, 1.0] 0.25
(1.0, 1.5] 0.50
(1.5, 2.0] 0.75
(0.5, 1.0] (-1.0, -0.5] 0.75
(-0.5, 0.0] 0.50
(0.0, 0.5] 0.25
(0.5, 1.0] 0.00
(1.0, 1.5] 0.25
(1.5, 2.0] 0.50
Name: amplitude, dtype: float64
from to
(-2.0, -1.5] (-1.0, -0.5] -1.25
(-0.5, 0.0] -1.00
(0.0, 0.5] -0.75
(0.5, 1.0] -0.50
(1.0, 1.5] -0.25
(1.5, 2.0] 0.00
(-1.5, -1.0] (-1.0, -0.5] -1.00
(-0.5, 0.0] -0.75
(0.0, 0.5] -0.50
(0.5, 1.0] -0.25
(1.0, 1.5] 0.00
(1.5, 2.0] 0.25
(-1.0, -0.5] (-1.0, -0.5] -0.75
(-0.5, 0.0] -0.50
(0.0, 0.5] -0.25
(continues on next page)
12 Chapter 3. Tutorials

pyLife Documentation, Release 2.0.0

(-0.5, 0.0]

(0.0, 0.5]

(0.5, 1.0]

(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]

|
el — I — I — I — T R — R — I — I — I — R A I — I — I — I — I —]

1.

.00
.25
.50
.50
.25
.00
.25
.50
.75
.25
.00
.25
.50
.75
.00
.00
.25
.50
.75
.00

25

Name: meanstress, dtype: float64,

from

(-2.0, -1.5]
(-1.5, -1.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]

to

(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(-1.0, -0.5]
(-0.5, 0.0]
(0.0, 0.5]
(0.5, 1.0]
(1.0, 1.5]

2
7
-7
-2.
-1
-1
1.
5
-5
-1.
-1
-0.
1
3
-3
-1
-0.
-0

-1.
1
0.
0.

.333333
.000000
.000000

333333

.400000
.000000

666667

.000000
.000000

666667

.000000

714286

.000000
.000000
.000000
.000000

600000

.428571
.000000
.000000
.000000
.333333
.200000
. 142857
.000000

000000

.000000

333333
200000

(continued from previous page)

(continues on next page)

3.2. Load Collectives and Load Histograms

13

[10]:

[10]:

[11]:

[11]:

pyLife Documentation, Release 2.0.0

(continued from previous page)

(1.5, 2.0] 0.142857
(0.5, 1.0] (-1.0, -0.5] -1.000000
(-0.5, 0.0] -0.333333
(0.0, 0.5] 0.333333
(0.5, 1.0] 1.000000
(1.0, 1.5] 0.600000
(1.5, 2.0] 0.428571

Name: R, dtype: float64)

This might look a bit confusing as this only shows the amplitudes, meanstresses and R-values correspond to the bins
of the histogram. Remember, that they were all except two empty. So let’s restrict the histogram to bins that are not
empty:

not_empty = histogram > 0.0
hi.amplitude[not_empty], hi.cycles[not_empty]

(from to

(-2.0, -1.5] (1.5, 2.0] 1.75
(0.5, 1.0] (-1.0, -0.5] 0.75
Name: amplitude, dtype: float64,

from to
(-2.0, -1.5] (1.5, 2.0] 2.0
(0.5, 1.0] (-1.0, -0.5] 3.0

Name: cycles, dtype: float64)

The amplitude values 1.75 and 0.75 correspond to 2.0 and 1.0. They are in the middle of the histogram bins.

3.2.3 A more complex example

Now let’s take a look at a more complex load collective. We use the TimeSignalGenerator to generate a load signal.

load_signal = TS.TimeSignalGenerator(
10,
{
'number': 50,
'amplitude_median': 1.0, 'amplitude_std_dev': 0.5,
'frequency_median': 4, 'frequency_std_dev': 3,
'offset_median': 0, 'offset_std_dev': 0.4
}, None, None
) .query(50000)
plt.plot(load_signal)

[<matplotlib.lines.Line2D at 0x7f1£f194eff70>]

14 Chapter 3. Tutorials

[12]:

[13]:

[13]:

pyLife Documentation, Release 2.0.0

20

0 10000 20000 30000 40000

Again we perform a rainflow analysis to obtain the load histogram.

detector = RF.FourPointDetector(recorder=RF.LoopValueRecorder())
detector.process(load_signal)

histogram = detector.recorder.histogram(64)

We can plot the histogram with a bit of processing.

fr, to = histogram.index.levels[0], histogram.index.levels[1]
numpy_hist = np.flipudChistogram.values.reshape(len(fr),len(to)))
X, Y = np.meshgrid(fr.left, to.left)

plt.pcolormesh(X, Y, numpy_hist)

<matplotlib.collections.QuadMesh at 0x7£f1£1889d130>

50000

3.2. Load Collectives and Load Histograms

15

pyLife Documentation, Release 2.0.0

-10 -5 0 5 10 15 20 25

We can also plot the cumulated version of the histogram. Therefor we put the amplitude and the cycles into a dataframe.

[14]: df = pd.DataFrame ({
'cycles': histogram.load_collective.cycles,
"amplitude': histogram.load_collective.amplitude,
}) .sort_values('amplitude', ascending=False)

Now we can plot the amplitude against the cumulated sum of the cycles:

[15]: plt.plot(np.cumsum(df.cycles), df.amplitude)
plt.loglog(

[15]: [1

16 Chapter 3. Tutorials

[17:

[2]:

pyLife Documentation, Release 2.0.0

1t

10°

10t

102

10° 1t 10° 1@

3.3 The concept of stress and strength

The fundamental principle of component lifetime and reliability design is to calculate the superposition of stress and
strength. Sometimes you would also say load and strength. The basic assumption is that as soon as the stress exceeds
the strength the component fails. Usually stress and strength are statistically distributed. In this tutorial we learn how
to work with material data and material laws to model the strength and then calculate the damage using a given load.

3.3.1 Material laws

The material load that is used to model the strength for component fatigue is the pylife.materiallaws.
WoehlerCurve class.

First we need to importpandas and the WoehlerCurve class.

import pandas as pd

import numpy as np

from pylife.materiallaws import WoehlerCurve
import matplotlib.pyplot as plt

The material data for a Wohler curve is usually stored in a pandas. Series. In the simplest form like this:

woehler_curve_data = pd.Series({

'SD': 300.0,
'ND': 1.5e6,
'k_1': 6.2

D)

3.3. The concept of stress and strength 17

[3]:
[3]:

[4]:

[5]:

[6]:

[6]:

pyLife Documentation, Release 2.0.0

Using the WoehlerCurve class can do operations on the data. To instantiate the class we use the accessor attribute
woehler. Then we can calculate the cycle number for a given load.

woehler_curve_data.woehler.cycles(350.0)

array(576794.57014027)

cycles = np.logspace(l., 8., 70)

load = woehler_curve_data.woehler.load(cycles)
plt.plot(cycles, load)

plt.loglog()

plt.show()

2= 108

10° 1

6w 10°

4x 10

Ix10¢

10! 10° 104 1 10® 1of 107 10¢

This basically means that a material of the given Wohler curve will fail after about 577k cycles when charged with a
load of 350. Note that we don’t use any units here. They just have to be consistent.

3.3.2 Damage sums

Usually we don’t have a single load amplitude but a collective. We can describe a collective using a python object that
has an amplitude and a cycle attribute. We can do that for example with a simple pandas.DataFrame:

load_collective = pd.DataFrame({
'cycles': [2e5, 3e4, 5e3, 2e2, 7el],
'amplitude': [374.0, 355.0, 340.0, 320.0, 290.0]
b

Using the pylife.strength. fatigue.damage function we can calculate the damage of each block of the load col-
lective. Therefore we use the fatigue accessor to operate on the Wohler data.

from pylife.strength import fatigue
woehler_curve_data.fatigue.damage(load_collective)

0 0.523107
1 0.056793
2 0.007243
3 0.000199
4 0.000000

Name: damage, dtype: float64

18 Chapter 3. Tutorials

[7]:
[7]7:

[8]:

[9]:

[10]:
[10]:

[11]:

pyLife Documentation, Release 2.0.0

Now we know the damage contribution of each block of the load collective. Of course we can also easily calculate the
damage sum by just summing up:

woehler_curve_data. fatigue.damage(load_collective).sum()

0.5873418943984274

3.3.3 Broadcasting to a FEM mesh

Oftentimes we want to map a load collective to a whole FEM mesh to map a load collective to every FEM node. For
those kinds of mappings pyLife provides thepylife.Broadcaster facility.

In order to operate properly the Broadcaster needs to know the meanings of the rows of a pandas.Series or a
pandas.DataFrame. For that it uses the index names. Therefore we have to set the index names appropriately.

load_collective.index.name = 'load_block'

Then we setup simple node stress distribution and broadcast the load collective to it.

node_stress = pd.Series(

[1.0, 0.8, 1.3],

index=pd.Index([1, 2, 3], name='node_id")
)

from pylife import Broadcaster

load_collective, node_stress = Broadcaster(node_stress).broadcast(load_collective)

As you can see, the Broadcaster returns two objects. The first is the object that has been broadcasted, in our case the
load collective:

load_collective

cycles amplitude
node_id load_block

1 0 200000.0 374.0
1 30000.0 355.0
2 5000.0 340.0
3 200.0 320.0
4 70.0 290.0
2 0 200000.0 374.0
1 30000.0 355.0
2 5000.0 340.0
3 200.0 320.0
4 70.0 290.0
3 0 200000.0 374.0
1 30000.0 355.0
2 5000.0 340.0
3 200.0 320.0
4 70.0 290.0

The second is the object that has been broadcasted to, in our case the node stress distribution.

node_stress

3.3. The concept of stress and strength 19

[11]:

[12]:

[12]:

[13]:

[13]:

pyLife Documentation, Release 2.0.0

node_id load_block

1 0 1.0
1 1.0
2 1.0
3 1.0
4 1.0
2 0 0.8
1 0.8
2 0.8
3 0.8
4 0.8
3 0 1.3
1 1.3
2 1.3
3 1.3
4 1.3

dtype: float64

As you can see, both have the same index, which is a cross product of the indices of the two initial objects. Now we
can easily scale the load collective to the node stress distribution.

load_collective['amplitude'] *= node_stress
load_collective

cycles amplitude
node_id load_block

1 0 200000.0 374.0
1 30000.0 355.0
2 5000.0 340.0
3 200.0 320.0
4 70.0 290.0
2 0 200000.0 299.2
1 30000.0 284.0
2 5000.0 272.0
3 200.0 256.0
4 70.0 232.0
3 0 200000.0 486.2
1 30000.0 461.5
2 5000.0 442.0
3 200.0 416.0
4 70.0 377.9

Now we have for each 1oad_block for each node_id the corresponding amplitudes and cycle numbers. Again we can
use the damage function to calculate the damage contribution of each load block on each node.

damage_contributions = woehler_curve_data.fatigue.damage(load_collective)
damage_contributions

node_id 1load_block

1 0 0.523107
1 0.056793
2 0.007243
3 0.000199
4 0.000000

(continues on next page)

20 Chapter 3. Tutorials

[14]:
[14]:

[1:

pyLife Documentation, Release 2.0.0

2 0
1
2
3
4
3 0
1
2
3
4

DDA NS DD

.000000
.000000
.000000
.000000
.000000
.660968
.288897
.036842
.001012
0.

000192

Name: damage, dtype: float64

(continued from previous page)

In order to calculate the damage sum for each node, we have to group the damage contributions by the node and sum

them up:

damage_contributions.groupby('node_id").sum()

node_id
1 0.587342
2 0.000000

3 2.987911

Name: damage, dtype: float64

As you can see the damage sum for node 3 is higher than 1, which means that the stress exceeds the strength. So we
would expect failure at node 3.

3.3. The concept of stress and strength

21

pyLife Documentation, Release 2.0.0

22 Chapter 3. Tutorials

CHAPTER
FOUR

PYLIFE USER GUIDE

This document aims to briefly describe the overall design of pyLife and how to use it inside your own applications, for
example Jupyter Notebooks.

4.1 Overview

pyLife provides facilities to perform different kinds of tasks. They can be roughly grouped as follows

4.1.1 Fitting material data

This is about extracting material parameters from experimental data. As of now this is a versatile set of classes to fit
Wohler curve (aka SN-curve) parameters from experimental fatigue data. Mid term we would like to see there a module
to fit tensile test data and things like that.

e pylife.materialdata.woehler

4.1.2 Predicting material behavior
These modules use material parameters, e.g. the ones fitted by the corresponding module about data fitting, to predict
material behavior. As of now these are

e pylife.materiallaws.RambergOsgood

e pylife.materiallaws.WoehlerCurve

¢ Functions to calculate the true stress and true strain, see pylife.materiallaws. true_stress_strain

4.1.3 Analyzing load collectives and stresses

These modules perform basic operations on time signals as well as more complpex things as rainflow counting.
e pylife.stress.collective — facilities to handle load collectives
e pylife.stress.rainflow — a versatile module for rainflow counting
e pylife.stress.equistress for equivalent stress calculations from stress tensors

e pylife.stress.timesignal for operations on time signals

23

pyLife Documentation, Release 2.0.0

4.1.4 Lifetime assessment of components

Calculate lifetime, failure probabilities, nominal endurance limits of components based on load collective and material
data.

4.1.5 Mesh operations

For operations on FEM meshes
» pylife.mesh.meshsignal — accessor classes for general mesh operations
* pylife.mesh.HotSpot for hotspot detection
* pylife.mesh.Gradient to calculate gradients of scalar values along a mesh

e pylife.mesh.Meshmapper to map one mesh to another of the same geometry by interpolating

4.1.6 VMAP interface

Import and export mesh data from/to VMAP files.

4.1.7 Utilities

Some mathematical helper functions, that are useful throughout the code base.

4.2 General Concepts

pyLife aims to provide toolbox of calculation tools that can be plugged together in order to perform complex operations.
We try to make the use of the existing modules as well as writing custom ones as easy as possible while at the same
time performing well on larger amounts of data. Moreover we try keep data that belongs together in self explaining
data structures, rather than in individual variables.

In order to achieve all that we make extensive use of pandas and numpy. In this guide we suppose that you have a basic
understanding of these libraries and the data structures and concepts they are using.

The page Data Model describes the way how data should be stored in pandas objects.

The page Signal API describes how mathematical operations are to be performed on those pandas objects.

4.2.1 The Data Model of pyLife

pyLife stores data for calculations most often in pandas objects. Modules that want to operate on such pandas objects
should use the pandas methods wherever possible.

24 Chapter 4. pyLife User guide

https://pandas.pydata.org/
https://numpy.org/

pyLife Documentation, Release 2.0.0

Dimensionality of data

pandas comes with two data classes, pandas.Series for one dimensional data and pandas.DataFrame for two
dimensional data.

This dimensionality has nothing to do with mathematical or geometrical dimensions, it only relates to the dimensionality
from a data structure perspective. There are two dimensions, we call them the one in row direction and the one in column
direction.

In row direction, all the values represent the same physical quantity, like a stress, a length, a volume, a time. It means
that it is easily thinkable to add infinitely more values in row direction. Furthermore it mostly would make sense to
perform statistical operations in row direction, like the maximum stress, the average volume, etc.

An one channel time signal is an example for a one dimensional data structure in row direction. You could add infinitely
more samples, every sample represents the same physical quantity, it makes sense to perform statistical operations on
the whole series.

In [4]: row_direction

Out[4]:

time

0 0.497646
1 0.278503
2 0.649374
3 0.419474
4 0.614923
5 0.961856

. <infinitely more could be added>
Name: Load, dtype: float64

In column direction, the values usually represent different physical quantities. You might be able to think of adding a
few more values in column direction, but not infinitely. It almost never makes sense to perform statistical operations in
column direction.

A Wohler curve is an example for a one dimensional example in column direction. All the members (columns) represent
different physical quantities, it is not obvious to add more values to the data structure and it makes no sense to perform
statistical operations to it.

In [8]: column_direction

Out[8]:

SD 3.000000e+02
ND 2.300000e+06
k_1 7.000000e+00
TS 1.234363e+00
TN 3.420000e+00

dtype: float64

Two dimensional data structures have both dimensions. An example would be a FEM-mesh.

In [9]: vmap.make_mesh('1l', 'STATE-2').join_coordinates().join_variable('STRESS_CAUCHY'").
—join_variable('DISPLACEMENT") .to_frame()

Out[9]:
X y z S11 S22 S33 S12 S13 .
—S23 dx dy dz
element_id node_id
1 1734 14.897208 5.269875 0.0 27.080811 6.927080 0.0 -13.687358 0.0 .

—~0.0 0.005345 0.000015 0.0

(continues on next page)

4.2. General Concepts 25

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

pyLife Documentation, Release 2.0.0

(continued from previous page)

0.0 0
0.0 0
0.0 0

0.0 0

4770

0.0 -0
0.0 -0
0.0 -0
0.0 -0

-0.0 -0.

1582

.005285

1596

.005376

4923

.005315

4924

.005326

3812

.005300

12418

.005444

14446

.005404

14614

.005330

14534
005371

[37884 rows x 12

0

0

0

0

0

14.555333 5.

.000003 0.0

14.630658 4.

.000019 0.0

14.726271 5.

.000009 0.0

14.592996 5.

.000013 0.0

-13.189782 -5.

.000027 0.0

-13.560289 -5.

.000002 0.0

-13.673285 -5.

.000009 0.0

-13.389065 -5.

.000022 0.0

-13.276068 -5

.000014 0.0

columns]

355806

908741

312840

132274

691876

278386

569107

709927

.419206

.0 28.

.0 47.

.0 27.

.0 38.

.0 36.

.0 32.

.0 34.

.0 36.

.0 33.

319006

701195

699907

010101

527439

868889

291058

063541

804211

.178649

.512213

.052865

.345431

.470588

.320898

.642457

.828889

.829817

.0 -10.

.0 -17.

.0 -12.

.0 -14.

732705 0.0 .

866833 0.0 .

210032 0.0 .

299768 0.0 .

.706686 0.0 .

.260107 0.0 .

.836027 0.0 .

.774759 0.0 .

.580153 0.0 .

Even though a two dimensional rainflow matrix is two dimensional from a mathematical point of view, it is one di-
mensional from a data structure perspective because every element represents the same physical quantity (occurrence
frequency of loops). You could add infinitely more samples by a finer bin and it can make sense to perform statistical
operations on the whole matrix, for example in order to normalize it to the maximum frequency value.

In order to represent mathematically multidimensional structures like a two dimensional rainflow matrix we use
pandas.MultiIndex. Example for a rainflow matrix in a two dimensional pandas.IntervalIndex.

In [11]: rainflow_matrix

Out[11]:
from

(-60.14656996518033, -49.911160871492996]

7.0

—10.0

5.0

4.0

—6.0

—

(42.20752097169333, 52.44293006538072]

to

(-50.39826857402471,
(-40.36454994053457,
(-30.33083130704449,
(-20.29711267355441,

(-10.26339404006427,

-40.36454994053457] o
-30.33083130704449] o
-20.29711267355441] o
-10.26339404006427] o

-0.2296754065741311] o

(9.804043226915951, 19.837761860406033] o
o (19.837761860406033, 29.871480493896172] o
ol (29.871480493896172, 39.90519912738631] o
o (39.90519912738631, 49.93891776087639] o
—11.0 (continues on next page)
26 Chapter 4. pyLife User guide

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.MultiIndex.html#pandas.MultiIndex
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.IntervalIndex.html#pandas.IntervalIndex

pyLife Documentation, Release 2.0.0

(continued from previous page)

(49.93891776087639, 59.972636394366475] o
‘%5-0
Name: frequency, Length: 121, dtype: float64

In [12]: type(rainflow_matrix)
Out[12]: pandas.core.series.Series

4.2.2 The pyLife Signal API

The signal api is the higher level API of pyLife. It is the API that you probably should be using. Some of the domain
specific functions are also available as pure numpy functions. However, we highly recommend you to take a closer look
at pandas and consider to adapt your application to the pandas way of doing things.

Motivation

In pyLife’s domain, we often deal with data structures that consist multiple numerical values. For example a Wohler
curve (see WoehlerCurve) consists at least of the parameters k_1, ND and SD. Optionally it can have the additional
parameters k_2, TN and TS. As experience teaches us, it is advisable to put these kinds of values into one variable to
avoid confusion. For example a function with more than five positional arguments often leads to hard to debugable
bugs due to wrong positioning.

Moreover some of these data structures can come in different dimensionalities. For example data structures describing
material behavior can come as one dataset, describing one material. They can also come as a map to a FEM mesh,
for example when you are dealing with case hardened components. Then every element of your FEM mesh can have a
different associated Wohler curve dataset. In pyLife we want to deal with these kinds of mappings easily without much
coding overhead for the programmer.

The pyLife signal API provides the class pylife.PylifeSignal to facilitate handling these kinds of data structures
and broadcasting them to another signal instance.

This page describes the basic concept of the pyLife signal API. The next page describes the broadcasting mechanism
of apylife.PylifeSignal.

The basic concept

The basic idea is to have all the data in a signal like data structure, that can be piped through the individual calculation
process steps. Each calculation process step results in a new signal, that then can be handed over to the next process
step.

Signals can be for example
* stress tensors like from an FEM-solver
* load collectives like time signals or a rainflow matrix
» material data like Wohler curve parameters

From a programmer’s point of view, signals are objects of either pandas.Series or pandas.DataFrame, depending
if they are one or two dimensional (see here about dimensionality).

Functions that operate on a signal are usually written as methods of an instance of as class derived from PylifeSignal.
These classes are usually decorated as Series or DataFrame accessor using pandas.api.extensions.
register_series_accessor() resp. pandas.api.extensions.register_dataframe_accessor().

4.2. General Concepts 27

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.register_series_accessor.html#pandas.api.extensions.register_series_accessor
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.register_series_accessor.html#pandas.api.extensions.register_series_accessor
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.register_dataframe_accessor.html#pandas.api.extensions.register_dataframe_accessor

pyLife Documentation, Release 2.0.0

Due to the decorators, signal accessor classes can be instantiated also as an attribute of a pandas.Series or pandas.
DataFrame. The following two lines are equivalent.

Usual class instantiation:

PlainMesh(df) .coordinates

Or more convenient using the accessor decorator attribute:

df.plain_mesh.coordinates

There is also the convenience function from_parameters() to instantiate the signal class from individual parameters.
Soapylife.materialdata.WoehlerCurve can be instantiated in three ways.

* directly with the class constructor

data = pd.Series({

'k_1': 7.0,
'ND': 2e6,
'SD': 320.

)

wc = WoehlerCurve(data)

* using the pandas accessor

data = pd.Series({

'k_1': 7.0,
'ND': 2e6,
'SD': 320.

D)

wc = data.woehler

* from individual parameters

wc = WoehlerCurve.from_parameters(k_1=7.0, ND=2e6, SD= 320.)

How to use predefined signal accessors

There are too reasons to use a signal accessor:
* let it validate the accessed DataFrame

 use a method or access a property that the accessor defines

Example for validation

In the following example we are validating a DataFrame that if it is a valid plain mesh, i.e. if it has the columns x and
y.

Import the modules. Note that the module with the signal accessors (here mesh) needs to be imported explicitly.

import pandas as pd
import pylife.mesh

Create a DataFrame and have it validated if it is a valid plain mesh, i.e. has the columns x and y.

28 Chapter 4. pyLife User guide

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

pyLife Documentation, Release 2.0.0

df = pd.DataFrame({'x': [1.0], 'yv': [1.0]})
df.plain_mesh

<pylife.mesh.meshsignal.PlainMesh at 0x7f0d94b6bc70>

Now create a DataFrame which is not a valid plain mesh and try to have it validated:

df = pd.DataFrame({'x': [1.0], 'a': [1.0]})
df.plain_mesh

AttributeError Traceback (most recent call last)
Input In [3], in <module>

1 df = pd.DataFrame({'x"': [1.0], 'a': [1.0]})
----> 2 df.plain_mesh

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pandas/core/generic.py:5583, in NDFrame.__getattr__(self, name)

5576 if (

5577 name not in self._internal_names_set

5578 and name not in self._metadata

5579 and name not in self._accessors

5580 and self._info_axis._can_hold_identifiers_and_holds_name(name)
5581):

5582 return self[name]

-> 5583 return object.__getattribute__(self, name)

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pandas/core/accessor.py:182, in CachedAccessor.__get__(self, obj, cls)
179 if obj is None:
180 # we're accessing the attribute of the class, i.e., Dataset.geo
181 return self._accessor
--> 182 accessor_obj = self._accessor(obj)
183 # Replace the property with the accessor object. Inspired by:
184 # https://www.pydanny.com/cached-property.html
185 # We need to use object.__setattr__ because we overwrite __setattr__ on
186 # NDFrame
187 object.__setattr__(obj, self._name, accessor_obj)

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pylife/core/pylifesignal.py:62, in PylifeSignal.__init__(self, pandas_obj)

54 """Instantiate a :class:'signal.PyLifeSignal’.
55
56 Parameters
C...)
59
60 """

61 self._obj = pandas_obj
---> 62 self._validate()

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pylife/mesh/meshsignal.py:102, in PlainMesh._validate(self)

(continues on next page)

4.2. General Concepts 29

pyLife Documentation, Release 2.0.0

(continued from previous page)

100 def _validate(self):

101 self._coord_keys = ['x', 'y']

--> 102 self.fail_if key missing(self._coord_keys)
103 if 'z' in self._obj.columns:
104 self._coord_keys.append('z")

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pylife/core/pylifesignal.py:184, in PylifeSignal.fail_if_key missing(self,.
—keys_to_check, msg)

153 def fail_if key missing(self, keys_to_check, msg=None):

154 """Raise an exception if any key is missing in a self._obj object.
155
156 Parameters
(C...)
182 :class: stresssignal.StressTensorVoigt"
183
--> 184 DataValidator().fail_if_key missing(self._obj, keys_to_check)

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pylife/core/data_validator.py:131, in DataValidator.fail_if key_missing(self,..
-.signal, keys_to_check, msg)

129 the_class = stack[2][0].f _locals['self']._ _class__
130 msg = the_class.__name__ + ' must have the items %s. Missing %s.'
--> 131 raise AttributeError(msg % (', '.join(keys_to_check), ', '.join(missing_keys)))

AttributeError: PlainMesh must have the items x, y. Missing vy.

Example for accessing a property

Get the coordinates of a 2D plain mesh

df = pd.DataFrame({'x': [1.0, 2.0, 3.0], 'y': [1.0, 2.0, 3.01}D)
df.plain_mesh.coordinates

Now a 3D mesh

df = pd.DataFrame({'x': [1.0], 'y': [1.0], 'z': [1.0], 'foo': [42.0], 'bar': [23.0]1})
df.plain_mesh.coordinates

Defining your own signal accessors

If you want to write a processor for signals you need to put the processing functionality in an accessor class that is
derived from the signal accessor base class like for example Mesh. This class you register as a pandas DataFrame
accessor using a decorator

import pandas as pd
import pylife.mesh

@pd.api.extensions.register_dataframe_accessor('my_mesh_processor')
class MylMesh(meshsignal.Mesh):

(continues on next page)

30 Chapter 4. pyLife User guide

pyLife Documentation, Release 2.0.0

(continued from previous page)

def do_something(self):
... your code here
the DataFrame is accessible by self._obj
usually you would calculate a DataFrame df to return it.
df = ...
you might want copy the index of self._obj to the returned
DataFrame.
return df.set_index(self._obj.index)

As MyMesh is derived from Mesh the validation of Mesh is performed. So in the method do_something() you can rely
on that self._obj is a valid mesh DataFrame.

You then can use the class in the following way when the module is imported.

Performing additional validation

Sometimes your signal accessor needs to perform an additional validation on the accessed signal. For example you
might need a mesh that needs to be 3D. Therefore you can reimplement _validate() to perform the additional validation.
Make sure to call _validate() of the accessor class you are deriving from like in the following example.

import pandas as pd
import pylife.mesh

@pd.api.extensions.register_dataframe_accessor('my_only_for_3D_mesh_processor')
class MyOnlyFor3DMesh(pylife.mesh.PlainMesh):
def _validate(self):
super()._validate() # call PlainMesh._validate()
self.fail_if key missing(['z'])

df = pd.DataFrame({'x"': [1.0], 'v': [1.0]1})
df.my_only_for_3D_mesh_processor

AttributeError Traceback (most recent call last)
Input In [6], in <module>
8 self.fail_if key missing(['z'])

10 df = pd.DataFrame({'x': [1.0], 'y': [1.0]})
---> 11 df.my_only_for_3D_mesh_processor

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pandas/core/generic.py:5583, in NDFrame.__getattr__(self, name)

5576 if (

5577 name not in self._internal_names_set

5578 and name not in self._metadata

5579 and name not in self._accessors

5580 and self._info_axis._can_hold_identifiers_and_holds_name (name)
5581):

5582 return self[name]

-> 5583 return object.__getattribute__(self, name)

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pandas/core/accessor.py:182, in CachedAccessor.__get__(self, obj, cls)

(continues on next page)

4.2. General Concepts 31

pyLife Documentation, Release 2.0.0

(continued from previous page)

179 if obj is None:
180 # we're accessing the attribute of the class, i.e., Dataset.geo
181 return self._accessor
--> 182 accessor_obj = self._accessor(obj)
183 # Replace the property with the accessor object. Inspired by:
184 # https://www.pydanny.com/cached-property.html
185 # We need to use object.__setattr__ because we overwrite __setattr__ on
186 # NDFrame
187 object.__setattr__(obj, self._name, accessor_obj)

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pylife/core/pylifesignal.py:62, in PylifeSignal.__init__(self, pandas_obj)
54 """Instantiate a :class:'signal.PyLifeSignal’.
55
56 Parameters

C...)

59
6@ mrrnn

61 self._obj = pandas_obj
---> 62 self._validate()

Input In [6], in MyOnlyFor3DMesh._validate(self)

6 def _validate(self):

7 super()._validate() # call PlainMesh._validate()
-————> 8 self.fail_if_key missing(['z'])

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pylife/core/pylifesignal.py:184, in PylifeSignal.fail_if_key missing(self,.
—keys_to_check, msg)

153 def fail if key missing(self, keys_to_check, msg=None):

154 """Raise an exception if any key is missing in a self._obj object.
155
156 Parameters
(C...)
182 :class: stresssignal.StressTensorVoigt"
183 e
--> 184 DataValidator().fail_if_key missing(self._obj, keys_to_check)

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pylife/core/data_validator.py:131, in DataValidator.fail_if key_missing(self,. .
—.signal, keys_to_check, msg)

129 the_class = stack[2][0].f locals['self']._ _class__
130 msg = the_class._ _name__ + ' must have the items %s. Missing %s.'
--> 131 raise AttributeError(msg % (', '.join(keys_to_check), ', '.join(missing_keys)))

AttributeError: MyOnlyFor3DMesh must have the items z. Missing z.

32 Chapter 4. pyLife User guide

pyLife Documentation, Release 2.0.0

Defining your own signals

The same way the predefined pyLife signals are defined you can define your own signals. Let’s say, for example, that
in your signal there needs to be the columns alpha, beta, gamma all of which need to be positive.

You would put the signal class into a module file my_signal_mod.py

import pandas as pd
from pylife import PylifeSignal

@pd.api.extensions.register_dataframe_accessor('my_signal')
class MySignal (PylifeSignal):
def _validate(self):
self.fail_if_key _missing(['alpha', 'beta', 'gamma'])
for k in ['alpha', 'beta', 'gamma']:
if (self._obj[k] < ®).any(Q:
raise ValueError("All values of %s need to be positive.
"At least one is less than 0" % k)

def some_method(self):
return self._obj[['alpha', 'beta', 'gamma'l]] * -3.0

You can then validate signals and/or call some_method().

Validation success.

df = pd.DataFrame({'alpha': [1.0, 2.0], 'beta': [1.0, 0.0], 'gamma': [1.0, 2.0]})
df.my_signal.some_method()

Validation fails because of missing gamma column.

df = pd.DataFrame({'alpha': [1.0, 2.0], 'beta': [1.0, -1.0]1})
df.my_signal.some_method()

AttributeError Traceback (most recent call last)
Input In [9], in <module>

1 df = pd.DataFrame({'alpha': [1.0, 2.0], 'beta': [1.0, -1.0]})
----> 2 df.my_signal.some_method()

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1ib/python3.8/site-
—packages/pandas/core/generic.py:5583, in NDFrame.__getattr__(self, name)
5576 if (

5577 name not in self._internal_names_set

5578 and name not in self._metadata

5579 and name not in self._accessors

5580 and self._info_axis._can_hold_identifiers_and_holds_name(name)
5581):

5582 return self[name]

-> 5583 return object.__getattribute__(self, name)

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pandas/core/accessor.py:182, in CachedAccessor.__get__(self, obj, cls)
179 if obj is None:

(continues on next page)

4.2. General Concepts 33

pyLife Documentation, Release 2.0.0

(continued from previous page)

180 # we're accessing the attribute of the class, i.e., Dataset.geo
181 return self._accessor
--> 182 accessor_obj = self._accessor(obj)
183 # Replace the property with the accessor object. Inspired by:
184 # https://www.pydanny.com/cached-property.html
185 # We need to use object.__setattr__ because we overwrite __setattr__ on
186 # NDFrame
187 object.__setattr__(obj, self._name, accessor_obj)

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pylife/core/pylifesignal.py:62, in PylifeSignal.__init__(self, pandas_obj)

54 """Instantiate a :class:'signal.PyLifeSignal’.
55
56 Parameters
C...)
59
60 """

61 self._obj = pandas_obj
---> 62 self._validate()

Input In [7], in MySignal._validate(self)
6 def _validate(self):

-——> 7 self.fail_if key missing(['alpha', 'beta', 'gamma'])
8 for k in ['alpha', 'beta', 'gamma']:
9 if (self._obj[k] < 0).any(Q:

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pylife/core/pylifesignal.py:184, in PylifeSignal.fail_if_key missing(self,.
—keys_to_check, msg)

153 def fail if key missing(self, keys_to_check, msg=None):

154 """Raise an exception if any key is missing in a self._obj object.
155
156 Parameters
(C...)
182 :class: stresssignal.StressTensorVoigt"
183 e
--> 184 DataValidator().fail_if_key missing(self._obj, keys_to_check)

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1ib/python3.8/site-
—packages/pylife/core/data_validator.py:131, in DataValidator.fail_if key_missing(self,. .
—.signal, keys_to_check, msg)

129 the_class = stack[2][0].f locals['self']._ _class__
130 msg = the_class._ _name__ + ' must have the items %s. Missing %s.'
--> 131 raise AttributeError(msg % (', '.join(keys_to_check), ', '.join(missing_keys)))

AttributeError: MySignal must have the items alpha, beta, gamma. Missing gamma.

Validation fail because one beta is negative.

df = pd.DataFrame({'alpha': [1.0, 2.0], 'beta': [1.0, -1.0], 'gamma': [1.0, 2.0]})
df.my_signal.some_method()

34 Chapter 4. pyLife User guide

pyLife Documentation, Release 2.0.0

ValueError Traceback (most recent call last)
Input In [10], in <module>
1 df = pd.DataFrame({'alpha': [1.0, 2.0], 'beta': [1.0, -1.0], 'gamma': [1.0, 2.0]}
)
----> 2 df.my_signal.some_method()

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pandas/core/accessor.py:182, in CachedAccessor.__get__(self, obj, cls)
179 if obj is None:
180 # we're accessing the attribute of the class, i.e., Dataset.geo
181 return self._accessor
--> 182 accessor_obj = self._accessor(obj)
183 # Replace the property with the accessor object. Inspired by:
184 # https://www.pydanny.com/cached-property.html
185 # We need to use object.__setattr__ because we overwrite __setattr__ on
186 # NDFrame
187 object.__setattr__(obj, self._name, accessor_obj)

File ~/checkouts/readthedocs.org/user_builds/pylife/envs/2.0.0/1lib/python3.8/site-
—packages/pylife/core/pylifesignal.py:62, in PylifeSignal.__init__(self, pandas_obj)

54 """Instantiate a :class:’signal.PyLifeSignal".
55
56 Parameters
¢...)
59
60 """

61 self._obj = pandas_obj
---> 62 self._validate()

Input In [7], in MySignal._validate(self)
8 for k in ['alpha', 'beta', 'gamma']:

9 if (self._obj[k] < ®).any(Q:
---> 10 raise ValueError("All values of %s need to be positive. "
11 "At least one is less than 0" % k)

ValueError: All values of beta need to be positive. At least one is less than 0

Additional attributes in your own signals

If your accessor class needs to have attributes other than the accessed object itself you can define default values in the
__init__() of your accessor and set these attributes with setter methods.

import pandas as pd
from pylife import PylifeSignal

@pd.api.extensions.register_dataframe_accessor('my_signal')
class MySignal (PylifeSignal):
def __init__(self, pandas_obj):
super(MySignal, self).__init__(pandas_obj)
self. _my_attribute = 'the default value'

(continues on next page)

4.2. General Concepts 35

pyLife Documentation, Release 2.0.0

(continued from previous page)

def set_my_attribute(self, my_attribute):
self. _my_attribute = my_attribute
return self

def do_something(self, some_parameter):
... use some_parameter, self._my_attribute and self._obj

>>> df.my_signal.set_my_attribute('foo').do_something(2342)

Registering a method to an existing accessor class

Note: This functionality might be dropped on the way to pyLife-2.0 as it turns out that it is not that much used.

One drawback of the accessor class API is that you cannot extend accessors by deriving from them. For example if you
need a custom equivalent stress function you cannot add it by deriving from StressTensorEquistress, and register
it by the same accessor equistress.

The solution for that is register_method() that lets you monkey patch a new method to any class deriving from
PylifeSignal.

from pylife import equistress

@pl.signal_register_method(equistress.StressTensorEquistress, 'my_equistress')
def my_equistress_method(df)

your code here

return ...

Then you can call the method on any DataFrame that is accessed by equistress:

>>> df.equistress.my_equistress()

You can also have additional arguments in the registered method:

from pylife import equistress

@pl.signal_register_method(equistress.StressTensorEquistress, 'my_equistress_with_arg')
def my_equistress_method_with_arg(df, additional_arg)

your code here

return ...

36 Chapter 4. pyLife User guide

pyLife Documentation, Release 2.0.0

>>> df.equistress.my_equistress_with_arg(my_additional_arg)

4.2.3 The Signal Broadcaster
Motivation

pyLife tries to provide a flexible API for its functionality with respect to sizes of the datasets involved. No matter if you
want to perform some calculation on just a single value or on a whole FEM-mesh. No matter if you want to calculate
the damage that a certain load amplitude does on a certain material, or if you have a FEM-mesh with different materials
associated with to element and every node has its own rainflow matrix.

Example

Take for example the function cycIles (). Imagine you have a single Wohler curve dataset like

import pandas as pd
from pylife.materiallaws import WoehlerCurve

woehler_curve_data = pd.Series({

'k_1': 7.0,
'ND': 2e5,
'SD': 320.0,
'"IN': 2.3,
'"TS': 1.25

)

woehler_curve_data

k_1 7.00
ND 200000.00
SD 320.00
TN 2.30
TS 1.25

dtype: float64

Now you can calculate the cycles along the Basquin equation for a single load value:

woehler_curve_data.woehler.cycles(load=350.)

array(106807.93865297)

Now let’s say, you have different loads for each element_id if your FEM-mesh:

amplitude = pd.Series([320., 340., 330., 320.], index=pd.Index([1, 2, 3, 4], name=
—'element_id"))
amplitude

element_id
1 320.0
2 340.0

(continues on next page)

4.2. General Concepts 37

pyLife Documentation, Release 2.0.0

(continued from previous page)

3 330.0
4 320.0
dtype: float64

cycles() now gives you a result for every element_id.

woehler_curve_data.woehler.cycles(load=amplitude)

element_id

1 200000.000000
2 130836.050152
3 161243.517913
4 200000.000000
dtype: float64

In the next step, even the Wohler curve data is different for every element, like for example for a hardness gradient in
your component:

woehler_curve_data = pd.DataFrame({

'k_1': 7.0,
'ND': 2e5,
'SD': [370., 320., 280, 280],
'"IN': 2.3,
'"TS': 1.25

}, index=pd.Index([1, 2, 3, 4], name='element_id"'))

woehler_curve_data

In this case the broadcaster determines from the identical index name element_id that the two structures can be aligned,
so every element is associated with its load and with its Wohler curve:

woehler_curve_data.woehler.cycles(load=amplitude)

element_id

1 inf
2 1.308361e+05
3 6.331967e+04
4 7.853918e+04
dtype: float64

In another case we assume that you have a Wohler curve associated to every element, and the loads are constant
throughout the component but different for different load scenarios.

amplitude_scenarios = pd.Series([320., 340., 330., 320.], index=pd.Index([1, 2, 3, 4],.
—name="'scenario'))
amplitude_scenarios

scenario

1 320.0
2 340.0
3 330.0

(continues on next page)

38 Chapter 4. pyLife User guide

pyLife Documentation, Release 2.0.0

(continued from previous page)

4 320.0
dtype: float64

In this case the broadcaster makes a cross product of load scenario and element_id, i.e. for every element_id for every
load scenario the allowable cycles are calculated:

woehler_curve_data.woehler.cycles(load=amplitude_scenarios)

element_id scenario
1 inf

inf

inf

inf
.000000e+05
.308361e+05
.612435e+05
.000000e+05
.853918e+04
.137878e+04
.331967e+04
.853918e+04
.853918e+04
.137878e+04
.331967e+04
.853918e+04

WINEFEF DA WNRFREDSWNRDDNWNR

NO UV NNOO UV NN R =N

4
dtype: float64

As is very uncommon that the load is constant all over the component like in the previous example we now consider
an even more complex one. Let’s say we have a different load scenarios, which give us for every element_id multiple
load “scenario’s:

amplitude_scenarios = pd.Series(
[320., 340., 330., 320, 220., 240., 230., 220, 420., 440., 430., 420],
index=pd.MultiIndex. from_tuples([
1, O, @, 25, @, 3, 1, 9,
@, D, @, 2, @2, 3, 2, 9,
G, D, G, 2, 3, 3, G, D
], names=['scenario', 'element_id']))
amplitude_scenarios

scenario element_id
1 320.
340.
330.
320.
220.
240.
230.
220.
420.
440.
430.

W INRFE D WNRE DA WDNRE
(= — I — I = N I A — I —]

(continues on next page)

4.2. General Concepts 39

pyLife Documentation, Release 2.0.0

(continued from previous page)

4 420.0
dtype: float64

Now the broadcaster still aligns the element_id:

woehler_curve_data.woehler.cycles(load=amplitude_scenarios)

scenario element_id
1 inf
1.308361e+05
6.331967e+04
7.853918e+04
inf
inf
inf
inf
.235634e+04
.152341e+04
.927892e+03
.170553e+04

WNRFRDWNRDANWDNR

= O N

4
dtype: float64

Note that in the above examples the call was always identical

woehler_curve_data.woehler.cycles(load=...)

That means that when you write a module for a certain functionality you don’t need to know if your code later on
receives a single value parameter or a whole FEM-mesh. Your code will take both and handle them.

Usage

As you might have seen, we did not call the pylife.Broadcaster in the above code snippets directly. And that’s
the way it’s meant to be. When you are on the level that you simply want to use pyLife’s functionality to perform
calculations, you should not be required to think about how to broadcast your datasets to one another. It should simply
happen automatically. In our example the the calls to the pylife.Broadcaster are done inside cycles().

You do need to deal with the pylife.Broadcaster when you implement new calculation methods. Let’s go through
an example.

Todo: Sorry, this is still to be written.

40 Chapter 4. pyLife User guide

CHAPTER
FIVE

PYLIFE COOKBOOK

5.1 Life time Calculation

demos/dash-apps/pyLife_logo_20200219_FINAL_RGB.png

This Notebook shows a general calculation stream for a nominal and local stress reliability approach.

5.1.1 Stress derivation
We are starting with the imported rainflow matrices. More information about the time series and loading handlin and
the RF generation you can find in the notebook time_series_handling

1. Mean stress correction

2. Multiplication with repeating factor of every manoveur

41

http://localhost:8888/notebooks/time_series_handling.ipynb

[1]:

[2]:

pyLife Documentation, Release 2.0.0

5.1.2 Damage Calculation

1. Select the damage calculation method (Miner elementary, Miner-Haibach, .

2. Calculate the damage for every load level and the damage sum

3. Calculate the failure probability with or w/o field scatter

5.1.3 Local stress approach

1. Load the FE mesh
2. Apply the load history to the FE mesh

3. Calculate the damage

import numpy as np

import pandas as pd

import pickle

from pylife.utils.histogram import
import pylife.stress.timesignal as ts

o

import pylife.stress.equistress

import pylife.stress
import pylife.strength.meanstress as MS
import pylife.strength.fatigue

import pylife.mesh.meshsignal

from pylife.strength import failure_probability as fp
import pylife.vmap

import pyvista as pv

import matplotlib.pyplot as plt
import matplotlib as mpl

from scipy.stats import norm

from helper_functions import plot_rf
mpl.style.use('seaborn')

mpl.style.use('seaborn-notebook")
mpl.style.use('bmh")

%matplotlib inline

pv.set_plot_theme ('document’)
pv.set_jupyter_backend('panel’)

read the rf data
rf_dict = pickle.load(open('rf dict.p", "rb"))

)

42

Chapter 5. pyLife Cookbook

[3]:

[4]:

[5]:

[6]:

[77:

[8]:

[9]:

pyLife Documentation, Release 2.0.0

Meanstress transformation

Here we are using the FKM Goodman approach to calculate the meanstress transformation

meanstress_sensitivity = pd.Series({
'M': 0.3,
'M2': 0.2

D)

transformed_dict = {k: rf_act.meanstress_transform.fkm goodman(meanstress_sensitivity, R
—.goal=-1.).to_pandas() for k, rf_act in rf _dict.items(Q}

Repeating factor

If you want to apply a repeating factor to your loads you can do it very easily:

repeating = {

'wn': 50.0,
'sine': 25.0,
'SoR': 25

load_dict = {k: transformed_dict[k] * repeating[k] for k in repeating.keys()}

We are calculating a seperat load case, where we summarize the three channels together. Later on we can compare the
damage results of this channel with the sum of the other channels.

load_dict['total'] = pd.concat([load_dict[k] for k in load_dict.keys()])

bins = pd.interval_range(0., load_dict['total'].load_collective.use_class_right().
—amplitude.max(), 64)

rebinned_dict = {k: rebin_histogram(v.load_collective.amplitude_histogram, bins) for k,.
—v in load_dict.items()}

fig, ax = plt.subplots(nrows=1, ncols=2,figsize=(10, 5))

for k, v in rebinned_dict.items():
amplitude = v.index.right[::-1]
cycles = v[::-1]
ax[0].step(cycles, amplitude, label=k)
ax[1].step(np.cumsum(cycles), amplitude, label=k)

for title, ai in zip(['Count', 'Cumulated'], ax):
ai.set_title(title)
ai.xaxis.grid(True)
ai.legend()
ai.set_xlabel('count')
ai.set_ylabel('amplitude')
ai.set_ylim((0,max(amplitude)))

5.1. Life time Calculation 43

pyLife Documentation, Release 2.0.0

Count Cumulated
W
—_— Ene
—— SoR
200 - " 200 -
150 - 150 -
) 1)
E e —1 " 3
= =
= =
& 100 - & 100 -
50 - 50 -
D i i i i D i i i
0 5000 10000 15000 20000 0 100000 200000 300000
count count

Nominal stress approach

Material parameters

You can create your own material data from Woeler tests using the Notebook woehler_analyzer

[10]: k_1 = 8

mat = pd.Series({
'k_1'": k_1,
'k.2' 2 *k_1-1,
'ND': 1.0e6,
'SD': 300.0,
'"TN': 12.,
'TS': 1.1

D)

display(mat)

k_1 8.0

k_2 15.0

ND 1000000.0

SD 300.0

TN 12.0

TS 1.1

dtype: float64

44 Chapter 5. pyLife Cookbook

http://localhost:8888/notebooks/woehler_analyzer.ipynb

[11]:

[12]:

[12]:

pyLife Documentation, Release 2.0.0

Damage Calculation

Now we can calculate the damage for every loadstep and summarize this damage to get the total damage.

damage for every load range

damage_miner_original = {k: mat.fatigue.damage(v.load_collective) for k, v in load_dict.
~items(Q)}

damage_miner_elementary = {k: mat.fatigue.miner_elementary() .damage(v.load_collective)..
—for k, v in load_dict.items()}

damage_miner_haibach = {k: mat.fatigue.miner_haibach() .damage(v.load_collective) for k,.
Vv in load_dict.items()}

and the damage sum

damage_sum_miner_haibach = {k: v.sum() for k, v in damage_miner_haibach.items()}
... and so on

print (damage_sum_miner_haibach)

print("total from sum: " + str(damage_sum_miner_haibach["wn"] + damage_sum_miner_haibach[
—"sine"] + damage_sum_miner_haibach["SoR"]))

{'wn': 5.679531727172357e-10, 'sine': 5.084090614627166e-07, 'SoR': 0.
—00012047238604791249, 'total': 0.0003026313577653086}
total from sum: 0.00012098136306254792

If we compare the sum of the first three load channels with the ‘total’ one. The different is based on the fact that we
have used 10 bins only. Try to rerun the notebook with a higher bin resolution and you will see the differences.

5.1.4 Plot the damage vs collectives

wCc = mat.woehler

cyc = pd.Series(np.logspace(l, 12, 200))

for pf, style in zip([0.1, 0.5, 0.9], ['--', '-', '"-=-"]):
load = wc.basquin_load(cyc, failure_probability=pf)
plt.plot(cyc, load, style)

plt.step(np.cumsum(rebinned_dict['total']J[::-1]), rebinned_dict['total'].index.right[::-

=11
plt.xlabel("cylces"), plt.ylabel("amplitude™)
plt.loglog()

(]

5.1. Life time Calculation 45

pyLife Documentation, Release 2.0.0

amplitude

10t =

10# 10 104 10# e 12
cylces

5.1.5 Without field scatter

In the first use case we assume, that we have the material scatter only. With that we can calculate the failure probability
using the FailureProbability class.

[13]: D50 = 0.01
damage = damage_sum_miner_haibach["total"]

di = np.logspace(np.logl®(le-1*damage), np.logl@(le2*damage), 1000)
std = pylife.utils.functions.scattering range_to_std(mat.TN)
failprob = fp.FailureProbability (D50, std).pf_simple_load(di)

fig, ax = plt.subplots(Q)

ax.semilogx(di, failprob, label='cdf'")

plt.vlines(damage, ymin=0, ymax=1, color="black")

plt.xlabel("Damage")

plt.ylabel("cdf™)

plt.title("Failure probability = " %fp.FailureProbability(D50,std) .pf_simple_
—load(damage))

plt.ylim(®,max(failprob))

plt.xlim(min(di), max(di))

[13]: (3.026313577653087e-05, 0.03026313577653087)

46 Chapter 5. pyLife Cookbook

[14]:

[14]:

pyLife Documentation, Release 2.0.0

Failure probability = 1.54e-04
08 -
07 -
06 -

05 -

cdf

03 -

02~

01 -

DG i - L L PR S |
10 10 1=

Damage

5.1.6 With field scatter

If we have the field scatter we can calculate the failure probability using convoluation of the probility density functions
of the load and the strength.

field_std = 0.35

fig, ax = plt.subplots()

plot pdf of material

mat_pdf = norm.pdf(np.logl0(di), loc=np.logl®(D50), scale=std)
ax.semilogx(di, mat_pdf, label='pdf_mat"')

plot pdf of load

field_pdf = norm.pdf(np.logl®(di), loc=np.logl®(damage), scale=field_std)
ax.semilogx(di, field_pdf, label="pdf load',color = 'r'")
plt.xlabel("Damage")

plt.ylabel("pdf™)

plt.title("Failure probability = " %fp.FailureProbability (D50, std).pf_norm_
—.load(damage, field_std))

plt.legend()

<matplotlib.legend.Legend at 0x7faab5d80190>

5.1. Life time Calculation 47

[15]:

[16]:

[17]:

[18]:

[19]:

[20]:

pyLife Documentation, Release 2.0.0

Failure probability = 2.76e-03

10 -
0a -

06 -

pdf

04 -

1 10 1
Damage

5.1.7 FE based failure probability calculation

5.1.8 FE Data

vm_mesh = pylife.vmap.VMAPImport("plate_with_hole.vmap")

pyLife_mesh = (vm_mesh.make_mesh('1', 'STATE-2')
.join_coordinates()
.join_variable('STRESS_CAUCHY")
.to_frame())

mises = pyLife_mesh.groupby('element_id')['S11", 'S22', 'S33',
—mean() .equistress.mises()

mises /= 150.0 # the nominal load level in the FEM analysis
#mises

5.1.9 Damage Calculation

'SizY, 'SigY, 'S23"1.

scaled_collective = load_dict['total'].load_collective.scale(mises)

damage = mat.fatigue.damage(scaled_collective)

damage = damage.groupby(['element_id']).sum()
#damage

grid = pv.UnstructuredGrid(*pyLife_mesh.mesh.vtk_data())
plotter = pv.Plotter(window_size=[1920, 1400])

plotter.add_mesh(grid, scalars=damage.to_numpy(), log_scale=True,

(continues on next page)

48

Chapter 5. pyLife Cookbook

pyLife Documentation, Release 2.0.0

(continued from previous page)
show_edges=True, cmap="'jet')
plotter.add_scalar_bar()
plotter.show()

Z
=
==
<Y
>
=

(LS
XOBIXS
XS

<SS
V2302058
LIS

35S
SOSSSS

0y

SOSSSSETS ‘::‘

SSSSSES SN0

SRS
S

KSS
SRR

KX
"

7.72e-292.75e-229.78e-163.48e-09
-

[21]: print("Maximal damage sum: %f" % damage.max())

Maximal damage sum: 0.012388

Failure probability of the plate

Often we don’t get the volume of the FE data from the result file. But with pyVista we can calculate the volume (or
area for 2d elements) easily:

[22]: areas = grid.compute_cell _sizes().cell_arrays["Area"]

To get the failure probability we have to proceed the following steps:
* get the failure probality of every element
* get the probality of survival for every element
* get the probality of survival for the whole component normed based on the volume (or area in 2d) of the element

* get the failure probality for the whole component

5.1. Life time Calculation 49

[23]:

[24]:

[17:

[2]:

[3]:

[4]:

[5]:

[5]:

pyLife Documentation, Release 2.0.0

fp_per_element = fp.FailureProbability(D50, std).pf_simple_load(damage)
probability_of_survival_per_ele = 1 - fp_per_element
probability_of_survival_component = (probability_of_survival_per_ele ** (areas/areas.

—sum())) .prod()
fp_component = 1 - probability_of_survival_component

print('\033[1m' + "Failure probability of the component is " %fp_component)

Failure probability of the component is 4.23e-04

5.2 Ramberg Osgood relation

The RambGood module allows you to easily calculate stress strain curves and stress strain hytesresis loops using the
Ramberg Osgood relation starting from the Hollomon parameters and Young’s modulus of a material.

import numpy as np
import matplotlib.pyplot as plt
import pylife.materiallaws as ML

5.2.1 Initialize the RambergOsgood class

ramberg_osgood = ML.RambergOsgood(E=210e3, K=1800, n=0.2)

5.2.2 Calculate the monotone branch

max_stress = 800
monotone_stress = np.linspace(0, max_stress, 150)
monotone_strain ramberg_osgood.strain(monotone_stress)

5.2.3 Calculate the cyclic branch

We calculate the lower branch of the hyteresis loop. By flipping it we get the upper branch.

hyst_stress = np.linspace(-max_stress, max_stress, 150)
hyst_strain = ramberg_osgood.lower_hysteresis(hyst_stress, max_stress)

plt.plot(monotone_strain, monotone_stress)

plt.plot(hyst_strain, hyst_stress)
plt.plot(-hyst_strain, np.flipChyst_stress))
plt.xlabel('strain')

plt.ylabel('stress')

Text(®, 0.5, 'stress')

50 Chapter 5. pyLife Cookbook

[1]:

[2]:

pyLife Documentation, Release 2.0.0

800 1

G001

400 1

200 1

stress
L)
;

—200 1

—400 1

=600 1

=800 1

5.3 Wohler analyzing functions

Developed by Mustapha Kassem in scope of a master thesis at TU Miinchen

import copy

import numpy as np

import pandas as pd

import plotly.express as px
import plotly.graph_objects as go

import pylife.materialdata.woehler as woehler
from pylife.materiallaws import WoehlerCurve

WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.

The Wolhler analysis module takes fatigue data, i. e. values of the form cycles load fracture that have been
measured by a fatigue testing lab and analyze it to return the parameters of a Wohler curve.

These are: * the slope k_1 * the cycle number of the endurance limit ND * the load level of the endurance limit SD *
the scatter line cycle (lifetime) direction TN * the scatter in load direction TS

We will see several methods to perform the analysis below.

5.3.1 Data import

Data is made up of two columns:

* The first column is made up of the load values

* The scond column is made up of the load-cycle values

file_name = 'data/woehler/fatigue-data-plain.csv

5.3. Wéhler analyzing functions

51

pyLife Documentation, Release 2.0.0

[3]: df = pd.read_csv(file_name, sep="\t')
df.columns=['load', 'cycles']
px.scatter(df, x='cycles', y="load', log_x=True, log_y=True)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Guessing the fractures

In this case there is no information if the specimen was a runout or a fracture. We can guess it based on the value for
the load_cycle_limit which defaults to 1e7.

[4]: load_cycle_limit = None # or for example le7
df = woehler.determine_fractures(df, load_cycle_limit)
px.scatter(df, x='cycles', y="load', color='"fracture', log_x=True, log_y=True)

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

5.3.2 Analysis

Genaral preparations

Before we do the actual analysis, we make some preparations like, guessing the initial fatigue_limit, distinguishing
between runouts and fractures and between infinite_zone and finite_zone.

[5]: fatigue_data = df.fatigue_data
fatigue_data.fatigue_limit

[5]: 308.909475

We can distinguish between the finite and infinite zones.

[6]: infinite_zone = fatigue_data.infinite_zone
finite_zone = fatigue_data.finite_zone

go.Figure([
go.Scatter(x=finite_zone.cycles, y=finite_zone.load, mode='markers', name='finite'),
go.Scatter(x=infinite_zone.cycles, y=infinite_zone.load, mode='markers', name=
—'infinite'),
go.Scatter(x=[df.cycles.min(), df.cycles.max()], y=[fatigue_data.fatigue_limit]*2,.
—mode="lines', name='fatigue limit'")
1) .update_xaxes(type="'log') .update_yaxes(type="log') .update_layout(xaxis_title='Cycles',.
—yaxis_title="Load")

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

We can separate fractures from runouts.

52 Chapter 5. pyLife Cookbook

[7]7:

[8]:

[8]:

[9]:

pyLife Documentation, Release 2.0.0

fractures = fatigue_data.fractures
runouts = fatigue_data.runouts

fig = go.Figure([
go.Scatter(x=fractures.cycles, y=fractures.load, mode='markers', name='fractures'),
go.Scatter(x=runouts.cycles, y=runouts.load, mode='markers', name='runouts'),
go.Scatter(x=[df.cycles.min(), df.cycles.max()], y=[fatigue_data.fatigue_limit]*2,.
—mode="lines', name='fatigue limit')
1) .update_xaxes(type="'log') .update_yaxes(type="log') .update_layout(xaxis_title='Cycles',.
—yaxis_title="Load")
fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Elementary analysis
The Elementary analysis is the first step of the analysis. It determines the slope k_1 in the finite region and the scatter
in cycle region TN using the pearl chain method.

The endurance limit in load direction SN is guessed from the tentative fatigue limit. The scatter in load direction TS is
transformed from TN using the slope k_1.

elementary_result = woehler.Elementary(fatigue_data).analyze()
elementary_result

k_1 8.626165
ND 898426.345672
SD 308.909475
N 12.059468
TS 1.334610
failure_probability 0.500000

dtype: float64

wc = elementary_result.woehler

cycles = np.logspace(np.logl®(df.cycles.min()), np.logl®(df.cycles.max()), 100)
elementary_fig = copy.deepcopy(fig)

elementary_£fig.add_scatter(x=cycles, y=wc.basquin_load(cycles), mode='lines', name=

— "Elementary 50%')

elementary_fig.add_scatter(x=cycles, y=wc.basquin_load(cycles, failure_probability=0.1),
mode="1lines', name='Elementary 10%')

elementary_fig.add_scatter(x=cycles, y=wc.basquin_load(cycles, failure_probability=0.9),
mode="1lines', name='Elementary 90%')

elementary_fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

5.3. Wéhler analyzing functions 53

[10]:

[10]:

[11]:

[12]:

[12]:

[13]:

pyLife Documentation, Release 2.0.0

Probit

probit_result = woehler.Probit(fatigue_data).analyze()
probit_result

k_1 8.626165e+00
ND 1.199879e+06
SD 2.987202e+02
TN 1.205947e+01
TS 1.110052e+00
failure_probability 5.000000e-01

dtype: float64

wc = probit_result.woehler

cycles = np.logspace(np.logl®(df.cycles.min()), np.logl®(df.cycles.max()), 100)
probit_fig = copy.deepcopy(fig)

probit_fig.add_scatter(x=cycles, y=wc.basquin_load(cycles), mode='lines', name='Probit 50
~%")

probit_fig.add_scatter(x=cycles, y=wc.basquin_load(cycles, failure_probability=0.1),.
—mode="'lines', name='Probit 10%')

probit_fig.add_scatter(x=cycles, y=wc.basquin_load(cycles, failure_probability=0.9),.
—mode="'lines', name='Probit 90%')

probit_fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Maximum Likelihood Infinite

The Maximum Likelihood Infinite method takes the parameters for the finite regime fitted by Elementary (k_1, TN)
and fits the ones for the infinite regime (SD, ND, TS), hence the name.

maxlike_inf result = woehler.MaxLikeInf(fatigue_data).analyze()
maxlike_inf result

k_1 8.626165e+00
ND 1.326971e+06
SD 2.952540e+02
N 1.205947e+01
TS 1.106812e+00
failure_probability 5.000000e-01

dtype: float64

wc = maxlike_inf_ result.woehler

cycles = np.logspace(np.logl®(df.cycles.min()), np.logl®(df.cycles.max()), 100)
maxlike_inf fig = copy.deepcopy(£fig)

maxlike_inf fig.add_scatter(x=cycles, y=wc.basquin_load(cycles), mode='lines', name=

< "MaxLikeInf 50%')

maxlike_inf fig.add_scatter(x=cycles, y=wc.basquin_load(cycles, failure_probability=0.1),

mada_T1Tl3mac! amama_ Mawl 31l,aTnL 1A0/TY
w0)

« mode="lines"' , Lidliie= 'MaxLikeInf 1 (continues on next page)

54 Chapter 5. pyLife Cookbook

[14]:

[14]:

[15]:

[16]:

pyLife Documentation, Release 2.0.0

(continued from previous page)

maxlike_inf fig.add_scatter(x=cycles, y=wc.basquin_load(cycles, failure_probability=0.9),
— mode="'lines', name='MaxLikeInf 90%')

maxlike_inf fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Maximum Likelihood Full

The Maximum Likelihood Full method just takes the elementary result as starting values but fits all the parameters.

maxlike_full result = woehler.MaxLikeFull(fatigue_data).analyze()
maxlike_full_result

k_1 8.626165e+00
ND 1.326971e+06
SD 2.952540e+02
N 9.862007e+00
TS 1.106811e+00
failure_probability 5.000000e-01

dtype: float64

wc = maxlike_full_result.woehler

cycles = np.logspace(np.logl®(df.cycles.min()), np.logl®(df.cycles.max()), 100)
maxlike_full_fig = copy.deepcopy(£fig)

maxlike_full_fig.add_scatter(x=cycles, y=wc.basquin_load(cycles), mode='lines', name=
< "MaxLikeFull 50%')

maxlike_full_fig.add_scatter(x=cycles, y=wc.basquin_load(cycles, failure_probability=0.
—1), mode="lines', name='MaxLikeFull 10%')

maxlike_full fig.add_scatter(x=cycles, y=wc.basquin_load(cycles, failure_probability=0.
—9), mode="lines', name="'MaxLikeFull 90%"')

maxlike_full_fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

Maximum Likelihood Full with fixed parameters

Sometimes it is desirable to pin one or more parameters of the Wohler curve to a predefined value based on assumptions
of the Wohler curve. You can archive that by handing the fixed parameters to the MaxLikeFull object using the
fixed_parameters argument.

fixed_parameters = {

'k_1': 7.,
'ND': leb6

(continues on next page)

5.3. Wéhler analyzing functions 55

[16]:

[17]:

[1:

[1]:

pyLife Documentation, Release 2.0.0

(continued from previous page)

maxlike_fixed_result = woehler.MaxLikeFull(fatigue_data).analyze(fixed_parameters=fixed_
—,parameters)
maxlike_fixed_result

k_1 7.000000
ND 16000000.000000
SD 296.971820
N 10.201474
TS 1.114568
failure_probability 0.500000

dtype: float64

wc = maxlike_fixed_result.woehler

cycles = np.logspace(np.logl®(df.cycles.min()), np.logl®(df.cycles.max()), 100)
maxlike_fixed_fig = copy.deepcopy(fig)

maxlike_fixed_fig.add_scatter(x=cycles, y=wc.basquin_load(cycles), mode='lines', name=
< 'MaxLikefixed 50%')

maxlike_fixed_fig.add_scatter(x=cycles, y=wc.basquin_load(cycles, failure_probability=0.
—1), mode="lines', name='MaxLikeFixed 10%')

maxlike_fixed_fig.add_scatter(x=cycles, y=wc.basquin_load(cycles, failure_probability=0.
—9), mode='"lines', name='MaxLikeFixed 90%')

maxlike_fixed_fig

Data type cannot be displayed: application/vnd.plotly.v1+json, text/html

5.4 Hotspot calculation demo

This notebook detects and classifies hotspots of the von Mises stress in a connected FEM mesh. Each element/node
entry of the mesh receives a number of the hotspot it is member of. “0” means the element/node is not part of any
hotspots. “1” means that the element/node is part of the hotspot with the highes peak, “2” the same for the second
highest peak and so forth.

See module documentation further details.

import numpy as np

import pylife

import pandas as pd

import scipy.stats as stats
import pylife.stress.equistress
import pylife.strength.meanstress
import pylife.mesh.meshsignal
import pylife.mesh.hotspot

import pylife.vmap

(continues on next page)

56 Chapter 5. pyLife Cookbook

https://pylife.readthedocs.io/en/latest/mesh/hotspot.html

[2]:

[3]:

[4]:

[5]:

pyLife Documentation, Release 2.0.0

import pyvista as pv

pv.set_plot_theme('document")
pv.set_jupyter_backend('panel"')

(continued from previous page)

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/vnd.holoviews_load.vO+json, application/javascript

vm_mesh = pylife.vmap.VMAPImport("plate_with_hole.vmap")
mesh = (vm_mesh.make_mesh('1', 'STATE-2')
.join_coordinates()
.join_variable('STRESS_CAUCHY')
.join_variable('DISPLACEMENT")
.to_frame())

5.4.1 Equivalent stress calculation

mesh['mises'] = mesh.equistress.mises()

5.4.2 Hot spot Calculation

threshold = .9 # factor of the maximum local value
mesh['hotspot'] = mesh.hotspot.calc("mises", threshold)

display(mesh[['x', 'y', 'z', 'mises', 'hotspot']])

X y Z mises hotspot

element_id node_id

1 1734 14.897208 5.269875 0.0 33.996987 0
1582 14.555333 5.355806 0.0 33.399850 0
1596 14.630658 4.908741 0.0 54.777007 0
4923 14.726271 5.312840 0.0 33.446991 0
4924 14.592996 5.132274 0.0 44.070962 0

4770 3812 -13.189782 -5.691876 0.0 43.577209 0
12418 -13.560289 -5.278386 0.0 39.903508 0
14446 -13.673285 -5.569107 0.0 40.478974 0
14614 -13.389065 -5.709927 0.0 42.140169 0
14534 -13.276068 -5.419206 0.0 41.143837 0

[37884 rows x 5 columns]

print (" hotspots found over the threshold" % mesh['hotspot'].max())

3 hotspots found over the threshold

5.4. Hotspot calculation demo

57

[6]:

[7]:

[8]:

[1:

[1:

[17:

pyLife Documentation, Release 2.0.0

grid = pv.UnstructuredGrid(*mesh.mesh.vtk_data())

plotter = pv.Plotter(window_size=[1920, 1080])

plotter.add_mesh(grid, scalars=mesh.groupby('element_id')["hotspot'].first() .to_numpy(Q),
show_edges=True, cmap='prism_r')

plotter.add_scalar_bar()

plotter.show()

First hotspot

first_hotspot = mesh[mesh['hotspot'] == 1]
display(first_hotspot)
X y z S11 S22 S33 S12 S13 '\
element_id node_id
456 5 0.0 6.3 0.0 300.899658 30.574533 0.0 -7.081042 0.0
S23 dx dy dz mises hotspot
element_id node_id
456 5 0.0 1.365477e-35 -0.005435 0.0 287.099222 1
second_hotspot = mesh[mesh['hotspot'] == 2]
display(second_hotspot)
X y z S11 S22 S33 S12 S13 '\
element_id node_id
2852 9 0.0 -6.3 0.0 284.085327 30.704277 0.0 3.546472 0.0
S23 dx dy dz mises hotspot

element_id node_id
2852 9 0.0 1.400164e-35 0.005436 0.0 270.115389 2

5.5 Stress gradient calculation

This demo shows the stress gradient calculation module. A gradient is calculated by fitting a plane into a node and its
neighbor nodes of an FEM mesh.

See documentation for details on the module.

import numpy as np
import pandas as pd

import pylife.stress.equistress
import pylife.mesh.gradient

import pylife.vmap

(continues on next page)

58 Chapter 5. pyLife Cookbook

https://pylife.readthedocs.io/en/latest/mesh/gradient.html

[2]:

[3]:

[4]:

[5]:

pyLife Documentation, Release 2.0.0

(continued from previous page)

import pyvista as pv

pv.set_plot_theme('document")
pv.set_jupyter_backend('panel"')

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/vnd.holoviews_load.vO+json, application/javascript

Read in demo data and add the stress tensor dimensions for the third dimension.

vm_mesh = pylife.vmap.VMAPImport("plate_with_hole.vmap")

pyLife_mesh = (vm_mesh.make_mesh('1', 'STATE-2')
.join_coordinates()
.join_variable('STRESS_CAUCHY")
.to_frame())

Calculate and add von Mises stress

pyLife_mesh['mises'] = pyLife_mesh.equistress.mises()

Calculate stress gradient on von Mises stress
grad = pyLife_mesh.gradient.gradient_of('mises')
grad["abs_grad"] = np.linalg.norm(grad, axis = 1)

pyLife_mesh = pyLife_mesh.join(grad)
display(pyLife_mesh)

X y z S11 S22 S33 \

element_id node_id

1 1734 14.897208 5.269875 0.0 27.080811 6.927080 0.0
1582 14.555333 5.355806 0.0 28.319006 1.178649 0.0
1596 14.630658 4.908741 0.0 47.701195 5.512213 0.0
4923 14.726271 5.312840 0.0 27.699907 4.052865 0.0
4924 14.592996 5.132274 0.0 38.010101 3.345431 0.0

4770 3812 -13.189782 -5.691876 0.0 36.527439 2.470588 0.0
12418 -13.560289 -5.278386 0.0 32.868889 3.320898 0.0
14446 -13.673285 -5.569107 0.0 34.291058 3.642457 0.0
14614 -13.389065 -5.709927 0.0 36.063541 2.828889 0.0
14534 -13.276068 -5.419206 0.0 33.804211 2.829817 0.0

S12 S13 S23 mises dmises_dx dmises_dy \

element_id node_id

1 1734 -13.687358 0.0 0.0 33.996987 -0.693487 -1.256807
1582 -10.732705 0.0 0.0 33.399850 -3.300877 -0.779737
1596 -17.866833 0.0 0.0 54.777007 -4.654205 1.511868
4923 -12.210032 0.0 0.0 33.446991 -1.438945 -4.702223

(continues on next page)

5.5. Stress gradient calculation

59

[6]:

[17:

pyLife Documentation, Release 2.0.0

(continued from previous page)

4924 -14.299768 0.0 0.0 44.070962 35.610803 -51.987913
4770 3812 -14.706686 0.0 0.0 43.577209 -0.154659 -6.003801
12418 -14.260107 0.0 0.0 39.903508 0.174451 -3.892492
14446 -13.836027 0.0 0.0 40.478974 2.091836 4.804640
14614 -13.774759 0.0 0.0 42.140169 -0.540695 -6.376289
14534 -14.580153 0.0 0.0 41.143837 -0.141019 -4.978514

dmises_dz abs_grad
element_id node_id

1 1734 0.0 1.435440
1582 0.0 3.391722
1596 0.0 4.893605
4923 0.0 4.917465
4924 0.0 63.014858
4770 3812 0.0 6.005793
12418 0.0 3.896399
14446 0.0 5.240262
14614 0.0 6.399172
14534 0.0 4.980511

[37884 rows x 14 columns]

grid = pv.UnstructuredGrid(*pyLife_mesh.mesh.vtk_data())
plotter = pv.Plotter(window_size=[1920, 1080])
plotter.add_mesh(grid, scalars=pyLife_mesh.groupby('element_id')["abs_grad"].mean().to_
—numpy O ,
show_edges=True, cmap="'jet')
plotter.add_scalar_bar()
plotter.show()

5.6 Local stress approach

5.6.1 FE based failure probability calculation

FE Data

we are using VMARP data format and rst file formats. It is also possible to use odb data,

import numpy as np

import pandas as pd

import pickle

import pylife.vmap

import pylife.mesh

import pylife.mesh.meshsignal
import pylife.stress.equistress
import pylife.stress

(continues on next page)

60 Chapter 5. pyLife Cookbook

pyLife Documentation, Release 2.0.0

(continued from previous page)

import pylife.strength.fatigue
import pylife.utils.histogram as psh
import pyvista as pv

from ansys.dpf import post

pv.set_plot_theme ('document’)

pv.set_jupyter_backend('ipyvtklink')

get_ipython().run_line_magic(matplotlib’', 'inline')

5.6.2 VMAP

For plotting of VMAP data we are using pyVista.

[2]: pyLife_mesh = (pylife.vmap.VMAPImport('"plate_with_hole.vmap").make_mesh('1', 'STATE-2")
.join_coordinates()
.join_variable('STRESS_CAUCHY")
.to_frame())

pyLife_mesh['mises'] = pyLife_mesh.equistress.mises()

grid = pv.UnstructuredGrid(*pyLife_mesh.mesh.vtk_data())

plotter = pv.Plotter(window_size=[1920, 1080])

plotter.add_mesh(grid, scalars=pyLife_mesh.groupby('element_id')['mises'].mean().to_
—numpy () ,

show_edges=True, cmap="'jet')
plotter.add_scalar_bar()
plotter.show()

5.6. Local stress approach 61

[3]:

[4]:

[5]:

[6]:

pyLife Documentation, Release 2.0.0

Now we want to apply the collectives to the mesh

mises = pyLife_mesh.groupby('element_id')['S11", 'S22', 'S33',
—mean() .equistress.mises()

'S12', 'S

13", 'S23'].

mises /= mises.max() # the nominal load level in the FEM analysis is set, that s_max = 1

collectives = pickle.load(open('collectives.p"”, "rb"))
collectives = collectives.unstack().T.fillna(0)

collectives_sorted = psh.combine_histogram([collectives[col] for col in collectives],

method="sum")

scaled_collectives = collectives_sorted.load_collective.scale(mises)

display(scaled_collectives.to_pandas().sample(5))

range element_id

(13.809263752657428, 20.71389562898614] 2915 16.0
(75.51855116742843, 94.39818895928553] 602 918.0
(67.96887403296256, 76.46498328708287] 2604 360.0
(54.517686917879075, 72.69024922383876] 758 13940.0
(14.54541186824786, 29.09082373649572] 381 0.0

Name: cycles, dtype: float64

Define the material parameters

mat = pd.Series({

'k_1': 8.,

'ND': 1.0e6,

'SD': 200.0, # range
'"IN': 1./12.,

'TS': 1./1.1

i)

Damage Calculation

damage = mat.fatigue.miner_haibach() .damage(scaled_collectives)
print("Max damage : " % damage.max())
damage = damage.groupby(['element_id']).sum()

Max damage : 0.001484

grid = pv.UnstructuredGrid(*pyLife_mesh.mesh.vtk_data())

plotter = pv.Plotter(window_size=[1920, 1080])

plotter.add_mesh(grid, scalars=damage.to_numpy(),
show_edges=True, cmap="'jet')

plotter.add_scalar_bar()

plotter.show()

62

Chapter 5

. pyLife Cookbook

[7]1:

pyLife Documentation, Release 2.0.0

1.64e-29 0.000572 0.00114 0.00172 0.00229
-

5.6.3 ANSYS

#%% Ansys (license is necessary)

For Ansys *.rst files we are using pymapdl

from ansys.mapdl import reader as pymapdl_reader

for more information please go to pymapdl

rst_input = post.load_solution("beam_3d.rst")

pymapdl has some nice features

rst_input.plot_nodal_displacement (0)

rst_input.plot_nodal_stress(0,"X")

ansys_mesh = pymapdl_reader.read_binary('beam_3d.rst")
grid_ansys = ansys_mesh.grid

plotter = pv.Plotter(window_size=[1920, 1080])

_, volume, _ = ansys_mesh.element_solution_data(®,"ENG")
volume = pd.DataFrame(volume) [1]

FHOoFH O W O W R R R R W% W

nodes, ansys_mesh_mises = ansys_mesh.nodal_stress(0)

ansys_mesh_mises = pd.DataFrame(data = ansys_mesh_mises,

columns=['S11', 'S22', 'S33', 'S12', 'S13', 'S23']).equistress.
—mises()

test = pd.DataFrame(ansys_mesh.mesh.elem).iloc[:, 8:]

#%%
plotter.add _mesh(grid_ansys, scalars=ansys_mesh_mises,
show_edges=True, cmap='jet")

plotter.add_scalar_bar()
plotter.show()

5.6. Local stress approach 63

[1]:

[2]:

[3]:

pyLife Documentation, Release 2.0.0

5.7 PSD Optimizer

Example for the derivation of an equivalent PSD signal for shaker testing or other purposes. See the docu of the pylife

psd_smoother function in the psdSignal class for more details

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from scipy import optimize as op

import sys

from pylife.stress.frequencysignal import psdSignal
import ipywidgets as wd

%matplotlib inline

psd = pd.DataFrame(pd.read_csv('data/PSD_values.csv'",index_col

#fsel = np.array([30,50,80,460,605,1000])
fsel = []
fig = plt.figure()
plt.loglog(psd)
txt = wd.Textarea(
value="",
placeholder="",
description="fsel = ',
disabled=False
)
display(txt)
def onclick(event):

= 0).iloc[5:1500,0])

yval = psd.values[psd.index.get_loc(event.xdata,method ='nearest')]

plt.vlines(event.xdata,0,yval)
fsel.append(event.xdata)
txt.value = "{:.2f}".format(event.xdata)
cid = fig.canvas.mpl_connect('button_press_event', onclick)

Textarea(value='"', description='fsel = ', placeholder='")
107
1077 1
1072 4
1077 5
101 107 10°
64 Chapter 5. pyLife Cookbook

pyLife Documentation, Release 2.0.0

[4]: fsel = np.asarray(fsel)
please uncomment the following line. It is just for utomatization purpose
fsel = np.asarray([5,29,264,1035,1300,])
print(fsel)

[5 29 264 1035 1300]

[5]: def rms_psd(psd):

return (sum(((psd.diff()+psd).dropna().values.flatten()*np.diff(psd.index.

—values)))**0.5)
plt.loglog(psd, label="rms = {:.2f}".format(rms_psd(psd)))
for i in np.linspace(0,1,4):
psd_fit = psdSignal.psd_smoother(psd, fsel, i)
plt.loglog(psd_fit, label="rms = {:.2f}".format(rms_psd(psd_fit)))
plt.legend()

[5]: <matplotlib.legend.Legend at 0x7flefc615490>

107 ;

10—2 -

1t 10* 10°

[1:

5.7. PSD Optimizer

65

pyLife Documentation, Release 2.0.0

5.8 Time series handling

demos/dash-apps/pyLife_logo_20200219_FINAL_RGB.png

This Notebook shows a general calculation stream for time series. You will see how to * read in time series * plot the
data in time and frequency domain * filter the time series with a bandpass filter * remove spikes using running statistics
* calculate and plot the rainflow matrices of the time series * combine the PSD to an envelope PSD.

If you have any question feel free to contact us.

: import numpy as np
import pandas as pd

import pylife.utils.histogram as psh

import pylife.stress.timesignal as ts

import pylife.stress.rainflow as RF

import pylife.stress.rainflow.recorders as RFR
import pickle

import pyvista as pv

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

import matplotlib as mpl

from scipy import signal as sg

mpl.style.use('seaborn')
mpl.style.use('bmh")

get_ipython() .run_line_magic('matplotlib', "inline')

some functionality to plot the rainflow matrices

66 Chapter 5. pyLife Cookbook

mailto:DanielChristopher.Kreuter@de.bosch.com

pyLife Documentation, Release 2.0.0

[2]: from helper_functions import plot_rf

5.8.1 Time series signal

import, filtering and so on. You can import your own signal with
e pd.read_csv()
* pd.read_excel()
e scipy.io.loadmat() for matlab files

and so on. Here we define a white noise, a sine and a sine on random signal.

[3]: np.random.seed(4711)
sample_frequency = 1024
t = np.linspace(0, 60, 60 * sample_frequency)
signal_df = pd.DataFrame(data = np.array([80 * np.random.randn(len(t)),
160 * np.sin(2 * np.pi * 50 * ©)]).T,
columns=["wn", "sine"],
index=pd.Index(t, name="time"))
signal_df["SoR"] = signal_df["wn"] + signal_df["sine"]
signal_df.plot(subplots=True)

[3]: array([<AxesSubplot:xlabel="time'>, <AxesSubplot:xlabel="time'>,
<AxesSubplot:xlabel="time'>], dtype=object)

250 -

—250 -

=100 -

[4]: ts.psd_df(signal_df, NFFT = 512).plot(loglog=True, ylabel="PSD", title="PSD of time.
—series")

[4]: <AxesSubplot:title={'center':'PSD of time series'}, xlabel='frequency', ylabel='PSD'>

5.8. Time series handling 67

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_excel.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html

pyLife Documentation, Release 2.0.0

PSD of time series

1

1t

ll}'ll =

e Co
frequency

5.8.2 Filtering

We are using a butterworth bandpass filter from scipy.signal to filter the time series.

[5]: £min = 5.0 # Hz
f max 100.0 # Hz

[6]: bandpass_df = ts.butter_bandpass(signal_df, f min, f_max)

df_psd = ts.psd_df(bandpass_df, NFFT = 512)
df_psd.plot(loglog=True, ylabel="PSD bandpassed", title="PSD of filtered time series")

[6]: <AxesSubplot:title={'center':'PSD of filtered time series'}, xlabel='frequency', ylabel=
— 'PSD bandpassed'>

PsD of filtered time series

10° - - v
—_— Ene

—— SoR
1

103

108

PSD bandpassed

10° -
102 -

s e
frequency

68 Chapter 5. pyLife Cookbook

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html

pyLife Documentation, Release 2.0.0

5.8.3 Running statistics

First we create a spike in our existing data set

[7]: bandpass_df["spiky"] = bandpass_df["sine"] + le4 * sg.unit_impulse(signal_df.shape[0],.
—idx="mid")
bandpass_df.plot(subplots=True)

[7]: array([<AxesSubplot:xlabel="time'>, <AxesSubplot:xlabel='"time'>,
<AxesSubplot:xlabel="time'>, <AxesSubplot:xlabel='time'>],
dtype=object)

100 -
o-

Now we want to clean this spike automatically

[8]: cleaned_df = ts.clean_timeseries(bandpass_df, "spiky", window_size=1024, overlap=32,
feature="maximum", method="remove", n_gridpoints=3,
percentage_max=0.05, order=3).drop(["time"], axis=1)

cleaned_df.plot(subplots=True)

Feature Extraction: 100%|| 244/244 [00:00<00:00, 6203.20it/s]

[8]: array([<AxesSubplot:xlabel="time'>, <AxesSubplot:xlabel="time'>,
<AxesSubplot:xlabel="time'>, <AxesSubplot:xlabel='time'>],
dtype=object)

5.8. Time series handling 69

pyLife Documentation, Release 2.0.0

5.8.4 Rainflow

The rainflow module in pyLife can be used with different counting methods:
« FKM
* Three point

* Four point enhanced

[9]: rainflow_bins = 10

[10]: #%% Rainflow for a multiple time series
recorder_dict = {key: RFR.FullRecorder() for key in cleaned_df}
detector_dict = {key: RF.FKMDetector(recorder=recorder_dict[key]) .process(cleaned_
—df[key]) for key in cleaned_df}
rf_series_dict = {key: detector_dict[key].recorder.histogram(rainflow_bins) for key in.
—detector_dict.keys(}

[11]: £ = plot_rf(rf_series_dict)

wn sine SoR spiky

100

. 0 =200

0 100 —100 To 0
From From

[12]: #%% Now Combining different RFs to one
rf_series_dict["wn + sn"] = psh.combine_histogram([rf_series_dict["wn"],rf_series_dict[
—"sine"]],
(continues on next page)

70 Chapter 5. pyLife Cookbook

https://pylife.readthedocs.io/en/latest/stress/rainflow.html

pyLife Documentation, Release 2.0.0

(continued from previous page)

method="sum")
f = plot_rf(rf_series_dict)

wn sine SoR spiky wn + sn

T 200

0

100 .
—200 0

~100 d
10 -looTo 0 200 —250

=100

0
From From From

0
o 100 -100 To

You can see the difference of the rainflow matrices of SoR and wn+sn.

5.8.5 PSD combinig

It is also possible to combine spectra

[13]: df_psd["envelope"] = df_psd[["sine", "wn"]].max(axis = 1)
df_psd.plot(loglog=True, ylabel="PSD")

[13]: <AxesSubplot:xlabel="'frequency', ylabel='PSD'>

10° - - wn
—_— Eine
. — 5SoR
1 — envelope
1r3
)
£ 1o
10° -
102 -
1t 10¢
frequency

5.8.6 Saving

Now we saving the rainflow data into a pickle file. If you want to have an introduction to damage and failure probability
calculation, please have a look on the notebook lifetime_calc

[14]: rf out = {k: rf_series_dict[k] for k in ["wn", "sine", "SoR"] if k in rf_series_dict}
pickle.dump(rf_out, open('rf_dict.p", "wb"))

5.8. Time series handling 71

http://localhost:8888/notebooks/lifetime_calc.ipynb

pyLife Documentation, Release 2.0.0

72 Chapter 5. pyLife Cookbook

CHAPTER
SIX

PYLIFE REFERENCE

6.1 General

6.1.1 pyLife core

class pylife.PylifeSignal (pandas_obj)
Base class for signal accessor classes.

Notes

Derived classes need to implement the method _validate(self, obj) that gets pandas_obj as obj parameter. This
validate() method must raise an Exception (e.g. AttributeError or ValueError) in case obj is not a valid DataFrame
for the kind of signal.

For these validation fail_if_key_missing() and get_missing_keys () might be helpful.

For a derived class you can register methods without modifying the class’ code itself. This can be useful if you
want to make signal accessor classes extendable.

See also:
fail_if_key missing() get_missing_keys() register_method()

fail_if key_missing(keys_to_check, msg=None)
Raise an exception if any key is missing in a self._obj object.

Parameters
» self._obj (pandas.DataFrame or pandas.Series)— The object to be checked
* keys_to_check (1ist)— A list of keys that need to be available in self._obj

Raises
e AttributeError - if self._obj is neither a pandas.DataFrame nor a pandas.Series

e AttributeError — if any of the keys is not found in the self._obj’s keys.

73

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/exceptions.html#AttributeError

pyLife Documentation, Release 2.0.0

Notes

If self._obj is a pandas.DataFrame, all keys of keys_to_check meed to be found in the self._obj.columns.
If self._obj is a pandas.Series, all keys of keys_to_check meed to be found in the self._obj.index.

See also:

get_missing_keys(), stresssignal.StressTensorVoigt

classmethod from_parameters(**kwargs)
Make a signal instance from a parameter set.

This is a convenience function to instantiate a signal from individual parameters rather than pandas objects.

A signal class like

@pd.api.extensions.register_dataframe_accessor('foo_signal')
class FooSignal (PylifeSignal):
pass

The following two blocks are equivalent:

pd.Series({'foo': 1.0, 'bar': 2.0}).foo_signal

FooSignal. from_parameters(foo=1.0, bar=1.0)

get_missing_keys (keys_to_check)
Get a list of missing keys that are needed for a self._obj object.

Parameters keys_to_check (1ist)— A list of keys that need to be available in self._obj
Returns missing_Kkeys — a list of missing keys
Return type list

Raises AttributeError — If self._obj is neither a pandas.DataFrame nor a pandas.Series

Notes
If self._obj is a pandas.DataFrame, all keys of keys_to_check not found in the self._obj.columns are re-
turned.

If self._obj is a pandas.Series, all keys of keys_to_check not found in the self._obj.index are returned.

keys(
Get a list of missing keys that are needed for a signal object.

Returns keys — a pandas index of keys
Return type pd.Index

Raises AttributeError — If self._obj is neither a pandas.DataFrame nor a pandas.Series

74 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/exceptions.html#AttributeError

pyLife Documentation, Release 2.0.0

Notes

If self._obj is a pandas.DataFrame, the self._obj.columns are returned.
If self._obj is a pandas.Series, the self._obj.index are returned.

to_pandas()
Expose the pandas object of the signal.

Returns pandas_object — The pandas object representing the signal

Return type pd.DataFrame or pd.Series

Notes

The default implementation just returns the object given when instantiating the signal class. Derived classes
may return a modified object or augmented, if they store some extra information.

By default the object is not copied. So make a copy yourself, if you intent to modify it.

class pylife.Broadcaster (pandas_obj)
The Broadcaster to align pyLife signals to operands.

Parameters
» pandas_obj (pandas.Series or pandas.DataFrame) — the object of the Broadcaster
e The (In most cases the Broadcaster class is not used directly.)-—
e class (functionality is in most cases used by the derived) -

param pylife.PylifeSignal.: :param The purpose of the Broadcaster is to take two numerical objects
and: :param return two objects of the same numerical data with an aligned index. That: :param means that math-
ematical operations using the two objects as operands can be: :param implemented using numpy’s broadcasting
functionality.: :param See method :method:" pylife.Broadcaster.broadcast™ documentation for details.: :param
The broadcasting is done in the following ways:

object parameter returned object returned.
—,parameter

Series Scalar Series Scalar

| ------ | ----- | | ------ | ----- |

| idx | I [idx | I

|------ |----- | 5.0 R B |----- | 5.0

| foo | 1.0 | | foo | 1.0 |

| bar | 2.0 | | bar | 2.0 |

| ------ |----- | |------ | ----- |

DataFrame Scalar DataFrame Series

| ------ |----- |----- | |------ | ----- |----- IR | ----- !
idx	foo	bar		idx	foo	bar		idx	
------	-----	-----		------	-----	----- I	-----		
0	1.0	2.0	5.0 ->	©	1.0	2.0		©	5.0
1	1.0	2.0		1	1.0	2.0		1	5.0
I I I I I I I I I I I									
-~	-----	-----		------	-----	----- I RS	-----		

(continues on next page)

6.1. General 75

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

pyLife Documentation, Release 2.0.0

(continued from previous page)

Series Series/DataFrame DataFrame Series/
—DataFrame
|------ |----- | |------ |----- | |------ |----- |----- IR |----- |
| None | | | idx | | | idx | foo | bar | | idx |
[-=---- [----- I | -—---- [----- I -> |------ | -—--- [----- I [------ | -—--- I
| foo | 1.0 | | 0 | 5.0 | | © | 1.0 | 2.0 | | ® | 5.0 |
| bar | 2.0 | | 1 | 6.0 | | 1 | 1.0 | 2.0 | | 1 | 6.0 |
[-=---- | ----- I I I I I I I I I I I
[------ | ----- I [------ | ----- | ----- I [------ |----- I

Series/DataFrame Series/DataFrame Series/DataFrame Series/
—DataFrame
|------ |----- | |------ |----- | |------ |----- | |------ |----- |
| xidx | | | xidx | | | xidx | | | xidx | |
[-=---- [----- I |-—---- [----- I -> |------ | -—--- I [------ | -—--- I
foo	1.0		tau	5.0		foo	1.0		foo	nan
bar	2.0		bar	6.0		bar	2.0		bar	6.0
-==---	-----		-==---	-----		tau	nan		tau	5.0

|------ |----- | |------ |----- |
Series/DataFrame Series/DataFrame Series/DataFrame Series/
—DataFrame
|------ |----- | |------ |----- | |------ |--=--- |----- IR |------
o] ---- |
| xidx | | | yidx | | | xidx | yidx | | | xidx | yidx.
| I
[-=---- |----- I [-=---- | ----- | > [------ |-=---- |----- I [------ [-=----
| === I
| foo | 1.0 | | tau | 5.0 | | foo | tau | 1.0 | | foo | tau .
| 5.0 |
| bar | 2.0 | | chi | 6.0 | I | chi | 1.0 | I | chi .
—~| 6.0 |
[-——--- [----- | | -——--- [----- | | bar | tau | 2.0 | | bar | tau .
| 5.0 |

| | chi | 2.0 | | | chi .
-] 6.0 |

|------ |------ |----- I |--—---
R |

broadcast (parameter, droplevel=[])
Broadcast the parameter to the object of self.

Parameters parameters (scalar, numpy array or pandas object)— The parameter to
broadcast to

Returns parameter, object
Return type index aligned numerical objects

The

76 Chapter 6. pyLife Reference

pyLife Documentation, Release 2.0.0

Examples

The behavior of the Broadcaster is best illustrated by examples:

Broadcasting pandas . Series to a scalar results in a scalar and a pandas.Series.

obj = pd.Series([1.0, 2.0], index=pd.Index(['foo', 'bar'], name='idx'))
obj

idx
foo 1.0
bar 2.0

dtype: float64

parameter, obj = Broadcaster(obj).broadcast(5.0)

parameter

array(5.)

obj

idx

foo 1.0
bar 2.0

dtype: float64

Broadcasting pandas .DataFrame to a scalar results in a pandas .DataFrame and a pandas. Series.

obj = pd.DataFrame({

"foo': [1.0, 2.0],

'bar': [3.0, 4.0]
}, index=pd.Index([1, 2], name='idx'))
obj

parameter, obj = Broadcaster(obj).broadcast(5.0)

parameter
idx

1 5.0
2 5.0

dtype: float64

obj

Broadcasting pandas.DataFrame to a a pandas.Series results in a pandas.DataFrame and a
pandas.Series, if and only if the index name of the object is None.

obj = pd.Series([1.0, 2.0], index=pd.Index(['tau', 'chi']))
obj

6.1. General

77

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

pyLife Documentation, Release 2.0.0

tau 1.0
chi 2.0
dtype: float64

parameter = pd.Series([3.0, 4.0], index=pd.Index(['foo', 'bar'], name='idx

—"'))
parameter
idx
foo 3.0
bar 4.0

dtype: float64

parameter, obj = Broadcaster(obj).broadcast(parameter)

parameter
idx

foo 3.0
bar 4.0

dtype: float64

obj

class pylife.DataValidator
fail_if key_missing(signal, keys_to_check, msg=None)
Raise an exception if any key is missing in a signal object.

Parameters
e signal (pandas.DataFrame or pandas.Series)— The object to be checked
* keys_to_check (1ist) — A list of keys that need to be available in signal
Raises
e AttributeError — if signal is neither a pandas.DataFrame nor a pandas.Series

e AttributeError - if any of the keys is not found in the signal’s keys.

Notes

If signal is a pandas.DataFrame, all keys of keys_to_check meed to be found in the signal.columns.
If signal is a pandas.Series, all keys of keys_to_check meed to be found in the signal.index.

See also:

signal.get_missing_keys(), stresssignal.StressTensorVoigt

get_missing_keys (signal, keys_to_check)
Get a list of missing keys that are needed for a signal object.

Parameters

* signal (pandas.DataFrame or pandas.Series)— The object to be checked

78 Chapter 6. pyLife Reference

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

pyLife Documentation, Release 2.0.0

6.2

* keys_to_check (1ist)— A list of keys that need to be available in signal
Returns missing_keys — a list of missing keys
Return type list

Raises AttributeError — If signal is neither a pandas. DataFrame nor a pandas.Series

Notes

If signal is a pandas.DataFrame, all keys of keys_to_check not found in the signal.columns are returned.
If signal is a pandas.Series, all keys of keys_to_check not found in the signal.index are returned.

keys (signal)
Get a list of missing keys that are needed for a signal object.

Parameters signal (pandas.DataFrame or pandas.Series)— The object to be checked
Returns keys — a pandas index of keys
Return type pd.Index

Raises AttributeError - If signal is neither a pandas.DataFrame nor a pandas.Series

Notes

If signal is a pandas.DataFrame, the signal.columns are returned.

If signal is a pandas.Series, the signal.index are returned.

Stress

6.2.1 The pyLife stress subpackage

The stress subpackage contains all the pyLife modules that deal with stress resp. load analysis.

There are the two central classes LoadCollective and LoadHistogram to describe load collectives.

6.2.2 The equistress module

Equivalent Stresses

Library to calculate the equivalent stress values of a FEM stress tensor.

By now the following calculation methods are implemented:

Principal stresses

Maximum principal stress
Minimum principal stress
Absolute maximum principal stress
Von Mises

Signed von Mises, sign from trace

6.2. Stress 79

https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3.8/library/exceptions.html#AttributeError

pyLife Documentation, Release 2.0.0

* Signed von Mises, sign from absolute maximum principal stress
e Tresca

 Signed Tresca, sign from trace

* Signed Tresca, sign from absolute maximum principal stress

class pylife.stress.equistress.StressTensorEquistress(pandas_obj)
abs_max_principal)

max_principal)

min_principal)

mises()

principals()
signed_mises_abs_max_principal ()
signed_mises_trace()
signed_tresca_abs_max_principal ()
signed_tresca_trace()

tresca()

pylife.stress.equistress.abs_max_principal (s//, s22, 533,512,513, s23)
Calculate absolute maximum principal stress (maximum of absolute eigenvalues with corresponding sign).

Parameters

* sl1 (array_like) — Component 11 of 3D tensor.

* s22 (array_Ilike) — Component 22 of 3D tensor.

* s33 (array_1like) — Component 33 of 3D tensor.

* s12 (array_like) — Component 12 of 3D tensor.

* s13 (array_like) — Component 13 of 3D tensor.

* s23 (array_1like) — Component 23 of 3D tensor.
Returns Absolute maximum principal stress. Shape is the same as the components.
Return type numpy.ndarray

pylife.stress.equistress.eigenval(s/], s22, s33, s12, s13, s23)
Calculate eigenvalues of a symmetric 3D tensor.

Parameters
* sl1 (array_like) — Component 11 of 3D tensor.
* s22 (array_1like) — Component 22 of 3D tensor.
* s33 (array_1like) — Component 33 of 3D tensor.
* s12 (array_like) — Component 12 of 3D tensor.
* s13 (array_like) — Component 13 of 3D tensor.
* s23 (array_Ilike) — Component 23 of 3D tensor.

Returns Array containing eigenvalues sorted in ascending order. Shape is (length of components, 3)
or simply 3 if components are single values.

80 Chapter 6. pyLife Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pyLife Documentation, Release 2.0.0

Return type numpy.ndarray

pylife.stress.equistress.max_principal (s//, s22, 533,512, s13, s23)
Calculate maximum principal stress (maximum of eigenvalues).

Parameters

* sl1 (array_like) — Component 11 of 3D tensor.

* s22 (array_Ilike) — Component 22 of 3D tensor.

* 833 (array_Ilike) — Component 33 of 3D tensor.

* s12 (array_like) — Component 12 of 3D tensor.

* s13 (array_like) — Component 13 of 3D tensor.

* s23 (array_1like) — Component 23 of 3D tensor.
Returns Maximum principal stress. Shape is the same as the components.
Return type numpy.ndarray

pylife.stress.equistress.min_principal(s//, s22, 533, s12, s13, s23)
Calculate minimum principal stress (minimum of eigenvalues).

Parameters

* sl1 (array_like) — Component 11 of 3D tensor.

* s22 (array_Ilike) — Component 22 of 3D tensor.

* s33 (array_Ilike) — Component 33 of 3D tensor.

* s12 (array_like) — Component 12 of 3D tensor.

* s13 (array_like) — Component 13 of 3D tensor.

* s23 (array_Ilike) — Component 23 of 3D tensor.
Returns Minimum principal stress. Shape is the same as the components.
Return type numpy.ndarray

pylife.stress.equistress.mises(s/1, s22, s33, 512,513, s23)
Calculate equivalent stress according to von Mises.

Parameters
* sl1 (array_like) — Component 11 of 3D tensor.
* s22 (array_Ilike) — Component 22 of 3D tensor.
* s33 (array_1like) — Component 33 of 3D tensor.
* s12 (array_like) — Component 12 of 3D tensor.
* s13 (array_like) — Component 13 of 3D tensor.
* s23 (array_Ilike) — Component 23 of 3D tensor.
Returns Von Mises equivalent stress. Shape is the same as the components.
Return type numpy.ndarray
Raises AssertionError: — Components’ shape is not consistent.

pylife.stress.equistress.principals(si/, s22, s33,s12, s13,523)
Calculate all principal stress components (eigenvalues).

6.2. Stress 81

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pyLife Documentation, Release 2.0.0

Parameters
* sl1 (array_like) — Component 11 of 3D tensor.
* 522 (array_Ilike) — Component 22 of 3D tensor.
* s33 (array_like) — Component 33 of 3D tensor.
* s12 (array_Ilike) — Component 12 of 3D tensor.
* s13 (array_Ilike) — Component 13 of 3D tensor.
* s23 (array_like) — Component 23 of 3D tensor.

Returns All principal stresses. Shape (..., 3).

Return type numpy.ndarray

pylife.stress.equistress.signed_mises_abs_max_principal (s//, s22, s33, s12, s13, s23)
Calculate equivalent stress according to von Mises, signed with the sign of the absolute maximum principal
stress.

Parameters

* sl1 (array_Ilike) — Component 11 of 3D tensor.

* s22 (array_like) — Component 22 of 3D tensor.

* s33 (array_like) — Component 33 of 3D tensor.

* s12 (array_Ilike) — Component 12 of 3D tensor.

* s13 (array_Ilike) — Component 13 of 3D tensor.

» s23 (array_like) — Component 23 of 3D tensor.
Returns Signed von Mises equivalent stress. Shape is the same as the components.
Return type numpy.ndarray

pylife.stress.equistress.signed_mises_trace(sl/, s22, s33, 512, s13, s23)
Calculate equivalent stress according to von Mises, signed with the sign of the trace (i.e s11 + s22 + s33).

Parameters

* sl1 (array_Ilike) — Component 11 of 3D tensor.

* s22 (array_like) — Component 22 of 3D tensor.

* s33 (array_like) — Component 33 of 3D tensor.

* s12 (array_Ilike) — Component 12 of 3D tensor.

* s13 (array_1like) — Component 13 of 3D tensor.

» s23 (array_like) — Component 23 of 3D tensor.
Returns Signed von Mises equivalent stress. Shape is the same as the components.
Return type numpy.ndarray

pylife.stress.equistress.signed_tresca_abs_max_principal (s//, s22, s33, s12, s13, s23)
Calculate equivalent stress according to Tresca, signed with the sign of the absolute maximum principal stress.

Parameters
* sl1 (array_like) — Component 11 of 3D tensor.

* s22 (array_like) — Component 22 of 3D tensor.

82 Chapter 6. pyLife Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pyLife Documentation, Release 2.0.0

* s33 (array_like) — Component 33 of 3D tensor.

* s12 (array_Ilike) — Component 12 of 3D tensor.

* s13 (array_Ilike) — Component 13 of 3D tensor.

» s23 (array_like) — Component 23 of 3D tensor.
Returns Signed Tresca equivalent stress. Shape is the same as the components.
Return type numpy.ndarray

pylife.stress.equistress.signed_tresca_trace(s//, s22, s33, 512, s13, s23)
Calculate equivalent stress according to Tresca, signed with the sign of the trace (i.e s11 + s22 + s33).

Parameters

* sl1 (array_Ilike) — Component 11 of 3D tensor.

* s22 (array_like) — Component 22 of 3D tensor.

* s33 (array_like) — Component 33 of 3D tensor.

* s12 (array_Ilike) — Component 12 of 3D tensor.

* s13 (array_Ilike) — Component 13 of 3D tensor.

» s23 (array_like) — Component 23 of 3D tensor.
Returns Signed Tresca equivalent stress. Shape is the same as the components.
Return type numpy.ndarray

pylife.stress.equistress.tresca(sil, s22, 533,512, s13, s23)
Calculate equivalent stress according to Tresca.

Parameters
* sl1 (array_like) — Component 11 of 3D tensor.
* s22 (array_like) — Component 22 of 3D tensor.
* s33 (array_like) — Component 33 of 3D tensor.
* s12 (array_Ilike) — Component 12 of 3D tensor.
* s13 (array_Ilike) — Component 13 of 3D tensor.
» s23 (array_like) — Component 23 of 3D tensor.
Returns Equivalent Tresca stress. Shape is the same as the components.

Return type numpy.ndarray

6.2.3 The rainflow module

A module performing rainflow counting

6.2. Stress 83

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pyLife Documentation, Release 2.0.0

Overview over pyLife’s rainflow counting module

From pyLife-2.0.0 on rainflow counting has been split into two different subtasks:
* hysteresis loop detection, done by a subclass of AbstractDetector.
* hysteresis loop recording, done by a subclass of AbstractRecorder.

That means you can combine detectors and recorders freely. You can choose recorders and detectors that come with
pyLife but also write your own custom detectors and custom recorders.

Detectors

Detectors process a one dimensional time signal and detect hysteresis loops in them. A hysteresis loop consists of the
sample point where the hysteresis starts, and the sample of the turning point where the hysteresis loop starts to turn
back towards the load level of the starting point.

Once the detector has detected such a sample pair that makes a closed hysteresis loop it reports it to the recorder. All
detectors report the load levels, some detectors also the index to the samples defining the loop limits.

pyLife’s detectors are implemented in a way that the samples are chunkable. That means that you don’t need to feed
them the complete signal at once, but you can resume the rainflow analysis later when you have the next sample chunk.

As of now, pyLife comes with the following detectors:
» ThreePointDetector, classic three point algorithm, reports sample index
* FourPointDetector, recent four point algorithm, reports sample index

e FKMDetector, algorithm described by Clormann & Seeger, recommended by FKM, does not report sample
index.

Recorders

Recorders are notified by detectors about loops and will process the loop information as they wish.
As of now, pyLife comes with the following recorders:
e LoopValueRecorder, only records the from and to values of all the closed hysteresis loops.

e FullRecorder, records additionally to the from and to values also the indices of the loop turning points in the
original time series, so that additional data like temperature during the loop or dwell times can be looked up in
the original time series data.

API Documentation
Detectors
The ThreePointDetector class

class pylife.stress.rainflow.ThreePointDetector (recorder)
Classic three point rainflow counting algorithm.

84 Chapter 6. pyLife Reference

pyLife Documentation, Release 2.0.0

from pylife.stress.timesignal import TimeSignalGenerator
import pylife.stress.rainflow as RF

ts = TimeSignalGenerator (10, {
'number': 50,
"amplitude_median': 1.0, 'amplitude_std_dev': 0.5,
'frequency_median': 4, 'frequency_std_dev': 3,
'offset_median': 0, 'offset_std_dev': 0.4}, None, None).query(10000)

rfc = RF.ThreePointDetector(recorder=RF.LoopValueRecorder())
rfc.process(ts)

rfc.recorder.collective

Alternatively you can ask the recorder for a histogram matrix:

rfc.recorder.histogram(bins=16)

from to
(-11.364740270468808, -9.216993554273254] (-10.233349189089544, -8.
-.126164018303303] 0.0

(-8.126164018303303, -6.018978847517063]..
- 0.0

(-6.018978847517063, -3.911793676730823]..
. 0.0

(-3.911793676730823, -1.
-.8046085059445822] 0.0

(-1.8046085059445822, 0.
-30257666484165924] 0.0

—

(20.851460472464503, 22.999207188660062] (12.9456876895591, 15.052872860345342] .

R "o (15.052872860345342, 17.160058031131584]..
R oo (17.160058031131584, 19.26724320191782] ..
- "0 (19.26724320191782, 21.374428372704063] .
- . (21.374428372704063, 23.4816135434903] .
- 0.0

Length: 256, dtype: float64

We take three turning points into account to detect closed hysteresis loops.
* start: the point where the loop is starting from
e front: the turning point after the start
* back: the turning point after the front

A loop is considered closed if following conditions are met:

* the load difference between front and back is bigger than or equal the one between start and front. In other
words: if the back goes beyond the starting point. For example (A-B-C) and (B-C-D) not closed, whereas
(C-D-E) is.

6.2. Stress 85

pyLife Documentation, Release 2.0.0

* the loop init has not been a loop front in a prior closed loop. For example F would close the loops (D-E-F)
but D is already front of the closed loop (C-D-E).

* the load level of the front has already been covered by a prior turning point. Otherwise it is considered part
of the front residuum.

When a loop is closed it is possible that the loop back also closes unclosed loops of the past by acting as loop
back for an unclosed start/front pair. For example E closes the loop (C-D-E) and then also (A-B-E).

Load ~—---------—--mmm -
| x B F x
———————— /-\mmmm o [
I /\ xD /
—————— J====\=/\=m e oo
I / Cx \ /
=-\-/-mmm oo e
[xA N/
____________________ N2
| x E

| Time

__init__ (recorder)
Instantiate a ThreePointDetector.

Parameters recorder (subclass of AbstractRecorder) — The recorder that the detector will
report to.

process (samples)
Process a sample chunk.

Parameters samples (array_like, shape (N,))- The samples to be processed
Returns self — The self object so that processing can be chained

Return type ThreePointDetector

The FourPointDetector class

class pylife.stress.rainflow.FourPointDetector (recorder)
Implements four point rainflow counting algorithm.

from pylife.stress.timesignal import TimeSignalGenerator
import pylife.stress.rainflow as RF

ts = TimeSignalGenerator (10, {
"number': 50,
'amplitude_median': 1.0, 'amplitude_std_dev': 0.5,
'frequency_median': 4, 'frequency_std_dev': 3,
'offset_median': 0, 'offset_std_dev': 0.4}, None, None).query(10000)

rfc = RF.FourPointDetector(recorder=RF.LoopValueRecorder())
rfc.process(ts)

rfc.recorder.collective

Alternatively you can ask the recorder for a histogram matrix:

86 Chapter 6. pyLife Reference

pyLife Documentation, Release 2.0.0

rfc.recorder.histogram(bins=16)

from to
(-18.84179414559365, -16.70855774672485] (-21.756306907873412, -19.
-»438175359364863] 0.0

(-19.438175359364863, -17.
-,120043810856316] 0.0

(-17.120043810856316, -14.
.801912262347768] 0.0

(-14.801912262347768, -12.48378071383922]..
. 0.0

(-12.48378071383922, -10.165649165330672]..
. 0.0

(13.156751837438321, 15.289988236307122] (3.7431401257206183, 6.061271674229165] .
. 0.0
(6.061271674229165, 8.37940322273771] o

. 0.0

(8.37940322273771, 10.697534771246264] o
- 0.0

(10.697534771246264, 13.01566631975481] .
. 0.0

(13.01566631975481, 15.333797868263353] .
- 0.0

Length: 256, dtype: float64

We take four turning points into account to detect closed hysteresis loops.

Consider four consecutive peak/valley points say, A, B, C, and D If B and C are contained within A and B, then
a cycle is counted from B to C; otherwise no cycle is counted.

ie, f X Y AND Z Y then a cycle exist FROM=B and TO=C where, ranges X=|D-C|, Y=|C-B|, and Z=|B-A|

Load ~——--------------- -
| x B F x
———————— JA\=mmmm e e
| /\ xD /
—————— [====\=/-\=mmmm oo oo men
| / Cx \ /

“\=/-mm e \---o/mmmmme-
| x A \ /
____________________ _/___________
| x E

| Time

So, if a cycle exsist from B to C then delete these peaks from the turns array and perform next iteration by joining
A&D else if no cylce exsists, then B would be the next strarting point.

__init__ (recorder)
Instantiate a FourPointDetector.

Parameters recorder (subclass of AbstractRecorder) — The recorder that the detector will
report to.

6.2.

Stress 87

pyLife Documentation, Release 2.0.0

process (samples)
Process a sample chunk.

Parameters samples (array_like, shape (N,))- The samples to be processed
Returns self — The self object so that processing can be chained

Return type FourPointDetector

The FKMDetector class

class pylife.stress.rainflow.FKMDetector (recorder)

Rainflow detector as described in FKM non linear.

The algorithm has been published by Clormann & Seeger 1985 and has been cited heavily since.

from pylife.stress.timesignal import TimeSignalGenerator
import pylife.stress.rainflow as RF

ts = TimeSignalGenerator (10, {
'number': 50,
'amplitude_median': 1.0, 'amplitude_std_dev': 0.5,
'frequency_median': 4, 'frequency_std_dev': 3,
'offset_median': 0, 'offset_std_dev': 0.4}, None, None).query(10000)

rfc = RF.FKMDetector(recorder=RF.LoopValueRecorder())
rfc.process(ts)

rfc.recorder.collective

Alternatively you can ask the recorder for a histogram matrix:

rfc.recorder.histogram(bins=16)

from to
(-16.622041286664835, -14.507581641845505] (-16.56195196949719, -14.
-.528172800076922] 0.0

(-14.528172800076922, -12.
-+494393630656653] 0.0

(-12.494393630656653, -10.
-.460614461236384] 0.0

(-10.460614461236384, -8.
-,426835291816115] 0.0

(-8.426835291816115, -6.
-+393056122395846] 0.0

—

(15.094853385625107, 17.209313030444434] (5.809618894125766, 7.8433980635460365]..
. 0.0
(7.8433980635460365, 9.877177232966307]..

. 0.0

(9.877177232966307, 11.910956402386574]..
. 0.0

(11.910956402386574, 13.
—944735571806842] 0.0

(continues on next page)

88

Chapter 6. pyLife Reference

pyLife Documentation, Release 2.0.0

(continued from previous page)

(13.944735571806842, 15.
-,978514741227114] 0.0
Length: 256, dtype: float64

Note: This detector does not report the loop index.

__init__ (recorder)
Instantiate a FKMDetector.

Parameters recorder (subclass of AbstractRecorder) — The recorder that the detector will
report to.

process (samples)
Process a sample chunk.

Parameters samples (array_like, shape (N,))- The samples to be processed
Returns self — The self object so that processing can be chained

Return type FKMDetector

Recorders

The LoopValueRecorder class

class pylife.stress.rainflow.LoopValueRecorder
Rainflow recorder that collects the loop values.

__init__O
Instantiate a LoopRecorder.

property collective
The overall collective recorded as pandas.DataFrame.

The columns are named from, to.

histogram(bins=10)
Calculate a histogram of the recorded values into a pandas. Series.

An interval index is used to index the bins.

Parameters bins (int or array_like or [int, int] or [array, array],
optional) — The bin specification (see numpy.histogram2d)

Returns A pandas.Series using a multi interval index in order to index data point for a given
from/to value pair.

Return type pandas.Series

histogram_numpy (bins=10)
Calculate a histogram of the recorded values into a plain numpy.histogram2d.

Parameters bins (int or array_like or [int, int] or [array, array],
optional) — The bin specification (see numpy.histogram2d)

Returns

6.2. Stress

89

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#int
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#int

pyLife Documentation, Release 2.0.0

* H (ndarray, shape(nx, ny)) — The bi-dimensional histogram of samples (see
numpy.histogram2d)

» xedges (ndarray, shape(nx+1,)) — The bin edges along the first dimension.
* yedges (ndarray, shape(ny+1,)) — The bin edges along the second dimension.

record_values (values_from, values_to)
Record the loop values.

property values_£from
1-D float array containing the values from which the loops start.

property values_to
1-D float array containing the values the loops go to before turning back.

The FullRecorder class

class pylife.stress.rainflow.FullRecorder
Rainflow recorder that collects the loop values and the loop index.

Same functionality like LoopValueRecorder but additionally collects the loop index.

__init__O
Instantiate a FullRecorder.

property collective
The overall collective recorded as pandas.DataFrame.

The columns are named from, to, index_from, index_to.

property index_from
1-D int array containing the index to the samples from which the loops start.

property index_to
1-D int array containing the index to the samples the loops go to before turning back.

record_index (index_from, index_to)
Record the index.

The AbstractRecorder class

class pylife.stress.rainflow.AbstractRecorder
A common base class for rainflow recorders.

Subclasses implementing a rainflow recorder are supposed to implement the following methods:
e record_values()
* record_index()

__init__O
Instantiate an AbstractRecorder.

chunk_local_index (global_index)
Transform the global index to an index valid in a certain chunk.

Parameters global_index (array-like int) - The global index to be transformed.
Returns

* chunk_number (array of ints) — The number of the chunk the indexed sample is in.

90 Chapter 6. pyLife Reference

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

pyLife Documentation, Release 2.0.0

* chunk_local_index (array of ints) — The index of the sample in its chunk.

property chunks
The limits index of the chunks processed so far.

Note: The first chunk limit is the length of the first chunk, so identical to the index to the first sample of
the second chunk, if a second chunk exists.

record_index (indeces_from, indeces_to)
Record hysteresis loop index to the recorder.

Parameters

¢ indeces_from (1ist of ints) — The sample indeces where the hysteresis loop starts
from.

e indeces_to(list of ints)-—The sample indeces where the hysteresis loop goes to and
turns back from.

Note: Default implementation does nothing. Can be implemented by recorders interested in the hysteresis
loop values.

record_values (values_from, values_to)
Report hysteresis loop values to the recorder.

Parameters

* values_from (1ist of floats) — The sample values where the hysteresis loop starts
from.

e values_to (list of floats) — The sample values where the hysteresis loop goes to
and turns back from.

Note: Default implementation does nothing. Can be implemented by recorders interested in the hysteresis
loop values.

report_chunk (chunk_size)
Report a chunk.

Parameters chunk_size (int)— The length of the chunk previously processed by the detector.

Note: Should be called by the detector after the end of process().

6.2.

Stress 91

https://docs.python.org/3.8/library/functions.html#int

pyLife Documentation, Release 2.0.0

Utility functions

pylife.stress.rainflow.find_turns(samples)
Find the turning points in a sample chunk.

Parameters samples (1D numpy.ndarray) — the sample chunk
Returns
* index (/D numpy.ndarray) — the indeces where sample has a turning point

* turns (/D numpy.ndarray) — the values of the turning points

Notes

In case of plateaus i.e. multiple directly neighbored samples with exactly the same values, building a turning
point together, the first sample of the plateau is indexed.

Compatibility

The old pylife-1.x rainflow counting API

In order to not to break existing code, the old pylife-1.x API is still in place as wrappers around the new API. Using it
is strongly discouraged. It will be deprecated and eventually removed.

6.2.4 The LoadCollective class

A Load collective.

The usual use of this signal is to process hysteresis loop data from a rainflow recording. Usually the keys from and to
are used to describe the hysteresis loops. Alternatively also the keys range and mean can be given. In that case the
frame is internally converted to from and to where the from values are the lower ones.

6.2.5 The LoadHistogram class

Base class for signal accessor classes.

Notes

Derived classes need to implement the method _validate(self, obj) that gets pandas_obj as obj parameter. This vali-
date() method must raise an Exception (e.g. AttributeError or ValueError) in case 0bj is not a valid DataFrame for the
kind of signal.

For these validation fail_if_key _missing() and get_missing_keys () might be helpful.

For a derived class you can register methods without modifying the class’ code itself. This can be useful if you want
to make signal accessor classes extendable.

See also:

fail_if key_missing() get_missing_keys() register_method()

92 Chapter 6. pyLife Reference

pyLife Documentation, Release 2.0.0

6.2.6 The stresssignal module

class pylife.stress.stresssignal.StressTensorVoigt (pandas_obj)
DataFrame accessor class for Voigt noted stress tensors

Raises AttributeError — if at least one of the needed columns is missing.
Notes

Base class to access pandas.DataFrame objects containing Voigt noted stress tensors. The stress tensor com-
ponents are assumed to be in the columns S1717, $22, §33, §12, §13, S23.

See also:

pandas.api.extensions.register_dataframe_accessor()

Examples

For an example see equistress.StressTensorEquistress.

6.2.7 The timesignal module

A module for time signal handling

Warning: This module is not considered finalized even though it is part of pylife-2.0. Breaking changes might
occur in upcoming minor releases.

class pylife.stress.timesignal.TimeSignalGenerator (sample_rate, sine_set, gauss_set, log_gauss_set)
Generates mixed time signals

The generated time signal is a mixture of random sets of sinus signals

For each set the user supplys a dict describing the set:

sinus_set = {
'number': number of signals
"amplitude_median':
"amplitude_std_dev':
'frequency_median':
'frequency_std_dev':
'offset_median':
'offset_std_dev':

The amplitudes (A), fequencies (w) and offsets (c) are then norm distributed. Each sinus signal looks like
s = Asin(wt + ¢) + ¢

where phi is a random value between 0 and 2.

So the whole sinus S set is given by the following expression:

6.2. Stress 93

https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.register_dataframe_accessor.html#pandas.api.extensions.register_dataframe_accessor

pyLife Documentation, Release 2.0.0

query (sample_num)
Gets a sample chunk of the time signal

Parameters sample_num (int) — number of the samples requested
Returns samples — the requested samples
Return type 1D numpy.ndarray

You can query multiple times, the newly delivered samples will smoothly attach to the previously queried
ones.

reset()
Resets the generator

A resetted generator behaves like a new generator.

pylife.stress.timesignal.butter_bandpass(df, lowcut, highcut, order=5)
Use the functonality of scipy

Parameters

e df (DataFrame) —

* lowcut (float) — low frequency

* highcut (fIoat) — high freqency.

* order (int, optional)— Butterworth filter order. The default is 5.
Returns TSout
Return type DataFrame

pylife.stress.timesignal.clean_timeseries(df, comparison_column, window_size=1000, overlap=800,
feature='abs_energy', method='"keep', n_gridpoints=3,
percentage_max=0.05, order=3)
Removes segments of the data in which the extracted feature value is lower as percentage_max and fills the gaps
with polynomial regression

Parameters
e df (input pandas DataFrame that shall be cleaned)-—

» comparison_column (str, column that is used for the feature)-comparison
with percentage max

» window_size (int, optional)-window size of the rolled segments - The default is 1000.
* overlap (int, optional) - overlap between 2 adjecent windows -The default is 200.

» feature (string, optional) - extracted feature - only supports one at a time - and only
features form tsfresh that dont need extra parameters. The default is “maximum”.

e method (string, optional)—
— ‘keep’: keeps the windows which are extracted,
— ’remove’: removes the windows which are extracted
* n_gridpoints (TYPE, optional)— number of gridpoints. The default is 3.

* percentage_max (float, optional)-min percentage of the maximum to keep the win-
dow. The default is 0.05.

e order (int, optional) - order of polynom The default is 3.

Returns df_poly — cleaned DataFrame

94 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#int

pyLife Documentation, Release 2.0.0

Return type pandas DataFrame

pylife.stress.timesignal.fs_calc(df)
Calculates the sample frequency of a DataFrame time series

Parameters df (DataFrame) — time series.
Returns fs — sample freqency
Return type int, float

pylife.stress.timesignal.psd_df(df ts, NFFT=512)
calculates the psd using Welch algorithm from matplotlib functionality

Parameters

o df_ts (DataFram) — time series dataframe

* NFFT (int, optional) - BufferSize. The default is 512.
Returns df_psd — PSD.
Return type DataFrame

pylife.stress.timesignal.resample_acc(df, fs=1)
Resamples a pandas time series DataFrame

Parameters
o df (DataFrame) —
e time_col (str) — column name of the time column
» fs (float) - sample rate of the resampled time series

Return type DataFrame

6.2.8 The frequencysignal module

A module for frequency signal handling

Warning: This module is not considered finalized even though it is part of pylife-2.0. Breaking changes might
occur in upcoming minor releases.

class pylife.stress.frequencysignal.psdSignal (df)
Handles different routines for self signals

Remark: We are using the pandas data frame schema. The index contains the discrete frequency step. Every
single column one self.

Some functions of these class:
e psd_optimizer

psd_smoother (fsel, factor_rms_nodes=0.5)
Smoothen a PSD using nodes and a penalty factor weighting the errors for the RMS and for the node PSD
values

Parameters

¢ self (DataFrame) — unsmoothed PSD

6.2. Stress 95

https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#float

pyLife Documentation, Release 2.0.0

e fsel (1ist or np.array) - nodes

e factor_rms_nodes (float (0 <= factor_rms_nods <= 1))-penalty error weight-
ing the errors:

— 0: only error of node PSD values is considered
— 1: only error of the RMS is considered
Return type DataFrame

rms_psd()

6.3 Strength

6.3.1 The Fatigue class

class pylife.strength.Fatigue (pandas_obj)
Extension for WoehlerCurve accessor class for fatigue calculations.

Note: This class is accessible by the fatigue accessor attribute.

damage (load_collective)
Calculate the damage to the material caused by a given load collective.

Parameters load_collective (pandas object or object behaving like a load
collective) — The given load collective

Returns damage — The calculated damage values. The index is the broadcast between
load_collective and self.

Return type pd.Series

security_cycles (load_distribution, allowed_failure_probability)
Calculate the security factor in cycles direction for given load distribution.

Parameters load_distribution (pandas object or object behaving like a load
collective) — The given load distribution

Returns security_factor — The calculated security_factors. The index is the broadcast between
load_distribution and self.

Return type pd.Series

security_load(load_distribution, allowed_failure_probability)
Calculate the security factor in load direction for given load distribution.

Parameters load_distribution (pandas object or object behaving like a load
collective)— The given load distribution

Returns security_factor — The calculated security_factors. The index is the broadcast between
load_distribution and self.

Return type pd.Series

96 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/functions.html#float

pyLife Documentation, Release 2.0.0

6.3.2 The meanstress module

Meanstress routines

Mean stress transformation methods

¢ FKM Goodman

* Five Segment Correction

class pylife.strength.meanstress.HaighDiagram(pandas_obj)

Model for a Haigh diagram in order to perform meanstress transformations.

A Haigh diagram a set of meanstress sensitivity slopes M that is changing with the R-values. The values of
the "pd.Series represents that slopes M and the pd.Intervallndex represents the R-ranges.

classmethod five_segment (five_segment_haigh_diagram)
Create a five segment slope Haigh diagram.

Parameters five_segment_haigh_diagram (pandas.Series or pandas.DataFrame) —
The five segment meanstress slope data.

Notes

five_segment_hagih_diagram has to provide the following keys:
* MO: the mean stress sensitivity between R==-inf and R==0
* M1: the mean stress sensitivity between R==0 and R==R12
* M2: the mean stress sensitivity betwenn R==R12 and R==R23
» M3: the mean stress sensitivity between R==R23 and R==1
* M4: the mean stress sensitivity beyond R==1
e R12: R-value between M1 and M2
* R23: R-value between M2 and M3

classmethod fkm_goodman (haigh_fkm_goodman)
Create a Haigh diagram according to FKM Goodman.
Parameters

e haigh_fkm_goodman (pd.Series or pd.DataFrame) — a series containing one or a
dataframe containing multiple values for M and optionally M2.

e M(The Haigh diagram according to FKM Goodman comes with the slope)-—
e slope (which is valid between R==-inf and R==0. Beyond R==0 the) -
e not. (is M2" if M2 is given or M/3 if)-

classmethod from_dict(segments_dict)
Create a Haigh diagram from a dict.

Parameters segments_dict (dict) — dict resolving the R-value intervals to the meanstress
slope

6.3.

Strength 97

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.8/library/stdtypes.html#dict

pyLife Documentation, Release 2.0.0

Example

>>> hd = MST.HaighDiagram.from_dict({
>>> (1.0, np.inf): 0.0,

>>> (-np.inf, 0.0): 0.5,

>>> (0.0, 1.0): 0.167

>>> 1)

sets up a FKM Goodman like Haigh diagram.

transform(cycles, R_goal)
Transform a load collective to defined R-value.

Parameters cycles (pd.Series accepted by class:LoadCollective’ or class:
" LoadHistogram) — The load collective

Returns transformed_cycles — The transformed cycles
Return type pd.Series

class pylife.strength.meanstress.MeanstressTransformCollective (pandas_obj)
five_segment (haigh, R_goal)

fkm_goodman (ms_sens, R_goal)

class pylife.strength.meanstress.MeanstressTransformMatrix(pandas_obj)
fkm_goodman (haigh, R_goal)

pylife.strength.meanstress.experimental_mean_stress_sensitivity(sn_curve_RO, sn_curve_Rnl,
N_c=inf)
Estimate the mean stress sensitivity from two FiniteLifeCurve objects for the same amount of cycles N_c.

The formula for calculation is taken from: “Betriebsfestigkeit”, Haibach, 3. Auflage 2006

Formula (2.1-24):
M, = SaR:_l(NC)/SaRZO(NC) -1

Alternatively the mean stress sensitivity is calculated based on both SD values (if N_c is not given).

Parameters
e sn_curve_RO® (pylife.strength.sn_curve.FiniteLifeCurve) - Instance of
FiniteLifeCurve for R ==
e sn_curve_Rnl (pylife.strength.sn_curve.FiniteLifeCurve) - Instance of

FiniteLifeCurve for R == -1

* N_c (float, (default=np.inf)) - Amount of cycles where the amplitudes should be
compared. If N_c is higher than a fatigue transition point (ND) for the SN-Curves, SD is
taken. If N_c is None, SD values are taken as stress amplitudes instead.

Returns Mean stress sensitivity M_sigma
Return type float

Raises ValueError — If the resulting M_sigma doesn’t lie in the range from O to 1 a ValueError is
raised, as this value would suggest higher strength with additional loads.

pylife.strength.meanstress. five_segment_correction(amplitude, meanstress, MO, M1, M2, M3, M4,
RI2, R23, R_goal)

Performs a mean stress transformation to R_goal according to the Five Segment Mean Stress Correction

98 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/exceptions.html#ValueError

pyLife Documentation, Release 2.0.0

Parameters
* Sa - the stress amplitude
* Sm — the mean stress
¢ Rgoal — the R-value to transform to
* M- the mean stress sensitivity between R=-inf and R=0
* M1 - the mean stress sensitivity between R=0 and R=R12
* M2 — the mean stress sensitivity betwenn R=R12 and R=R23
* M3 — the mean stress sensitivity between R=R23 and R=1
* M4 — the mean stress sensitivity beyond R=1
* R12 — R-value between M1 and M2
* R23 — R-value between M2 and M3

Returns the transformed stress range

pylife.strength.meanstress. fkm_goodman (amplitude, meanstress, M, M2, R_goal)

6.3.3 The FailureProbability class

Strength representation to calculate failure probabilities
The strength is represented as a log normal distribution of strength_median and strength_std.
Failure probabilities can be calculated for a given load or load distribution.

param strength_median The median value of the strength

type strength_median array_like, shape (N,)

param strength_std The standard deviation of the strength

type strength_std array_like, shape (N,)

Note: We assume that the load and the strength are statistically distributed values. In case the load is higher than the
strength we get failure. So if we consider a quantile of our load distribution of a probability p_load, the probability of
failure due to a load of this quantile is p_load times the probability that the strength lies within this quantile or below.

So in order to calculate the total failure probability, we need to integrate the load’s pdf times the strength’ cdf from -inf
to +inf.

6.3.4 The miner module

Implementation of the miner rule for fatigue analysis

Currently, the following implementations are part of this module:
* Miner Elementary

e Miner Haibach

6.3. Strength 99

pyLife Documentation, Release 2.0.0

References
* M. Wichter, C. Miiller and A. Esderts, “Angewandter Festigkeitsnachweis nach {FKM }-Richtlinie” Springer
Fachmedien Wiesbaden 2017, https://doi.org/10.1007/978-3-658-17459-0
* E. Haibach, “Betriebsfestigkeit”, Springer-Verlag 2006, https://doi.org/10.1007/3-540-29364-7

class pylife.strength.miner.MinerBase (pandas_obj)
Basic functions related to miner-rule (original).

Uses the constructor of WoehlerCurve.

effective_damage_sum(collective)
Compute effective damage sum D_m.

Refers to the formula given in Waechter2017, p. 99
Parameters collective (a load collective) — the multiple of the lifetime
Returns effective_damage_sum — The effective damage sums for the collective
Return type float or pandas.Series

finite_life_factor ()
Calculate finite life factor according to Waechter2017 (p. 96).

Parameters N (float)— Collective range (sum of cycle numbers) of load collective

gassner_cycles(collective)
Compute the cycles of the Gassner line for a certain load collective.

Parameters collective (LoadCollective or similar) — The load collective
Returns The cycles for the collective

Return type cycles

Note: The absolute load levels of the collective are important.

abstract lifetime_multiple(collective)
Compute the lifetime multiple according to the corresponding Miner rule.

Needs to be implemented in the class implementing the Miner rule.
Parameters collective (LoadCollective or similar) — The load collective
Returns lifetime_multiple — lifetime multiple
Return type float > 0

class pylife.strength.miner.MinerElementary (pandas_obj)
Implementation of Miner Elementary according to Waechter2017.

gassner (collective)
Calculate the Gafiner shift according to Miner Elementary.

Parameters collective (LoadCollective or similar) — The load collective
Returns gassner — The Galiner shifted fatigue strength object.
Return type Fatigue

lifetime_multiple(collective)
Compute the lifetime multiple according to Miner Elementary.

100 Chapter 6. pyLife Reference

https://doi.org/10.1007/978-3-658-17459-0
https://doi.org/10.1007/3-540-29364-7
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3.8/library/functions.html#float

pyLife Documentation, Release 2.0.0

Described in Waechter2017 as “Lebensdauervielfaches, A_ele”.
Parameters collective (LoadCollective or similar) — The load collective
Returns lifetime_multiple — lifetime multiple
Return type float > 0

class pylife.strength.miner.MinerHaibach(pandas_obj)
Miner-modified according to Haibach (2006).

Warning: Contrary to Miner Elementary, the lifetime multiple is not constant but dependent on the evaluated
load level! That is why there is no method for the GaB3ner shift.

lifetime_multiple(collective)
Compute the lifetime multiple for Miner-modified according to Haibach.

Refer to Haibach (2006), p. 291 (3.21-61). The lifetime multiple can be expressed in respect to the maxi-
mum amplitude so that N_lifetime = N_Smax * A

Parameters collective (LoadCollective or similar) — The load collective

Returns lifetime_multiple — lifetime multiple return value is ‘inf” if maximum collective ampli-
tude < SD

Return type float > 0

pylife.strength.miner.effective_damage_sum(/ifetime_multiple)
Compute effective damage sum.

Refers to the formula given in Waechter2017, p. 99
Parameters
* A(float or np.ndarray (with 1 element)) - the multiple of the lifetime
* Returns —

e d_m (float) — the effective damage sum

6.4 Materiallaws

6.4.1 The hookeslaw module

class pylife.materiallaws.hookeslaw.HookesLawld(FE)
Implementation of the one dimensional Hooke’s Law

Parameters E (float)— Young’s modulus

property E
Get Young’s modulus

strain(stress)
Get the elastic strain for a given stress

Parameters stress (array-like float)— The stress
Returns strain — The resulting elastic strain

Return type array-like float

6.4. Materiallaws 101

https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float

pyLife Documentation, Release 2.0.0

stress(strain)
Get the stress for a given elastic strain

Parameters strain (array-like float) - The elastic strain
Returns strain — The resulting stress
Return type array-like float

class pylife.materiallaws.hookeslaw.HookesLaw2dPlaneStrain(FE, nu)
Implementation of the Hooke’s Law under plane strain conditions.

Parameters
* E (float)— Young’s modulus

* nu (float) — Poisson’s ratio. Must be between -1 and 1./2.

Notes
A cartesian coordinate system is assumed. The strain components in 3 direction are assumed to be zero, 33 =
gl3=g23=0.

property E
Get Young’s modulus

property G
Get the sheer modulus

property K
Get the bulk modulus

property nu
Get Poisson’s ratio

strain(s/i, s22, s12)
Get the elastic strain components for given stress components

Parameters
e sll (array-like float)— The normal stress component with basis 1-1
e 822 (array-like float)— The normal stress component with basis 2-2
* s12 (array-like float)— The shear stress component with basis 1-2
Returns
* ell (array-like float) — The resulting elastic normal strain component with basis 1-1
* 22 (array-like float) — The resulting elastic normal strain component with basis 2-2

 g12 (array-like float) — The resulting elastic engineering shear strain component with basis
1-2, (1. /2 * g12 is the tensor component)

stress(ell, e22, gl2)
Get the stress components for given elastic strain components

Parameters
e ell (array-like float)— The elastic normal strain component with basis 1-1
e @22 (array-like float)— The elastic normal strain component with basis 2-2

* gl12 (array-like float) — The elastic engineering shear strain component with basis
1-2, (1. /2 * g2 is the tensor component)

102 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float

pyLife Documentation, Release 2.0.0

Returns
¢ s11 (array-like float) — The resulting normal stress component with basis 1-1
* s22 (array-like float) — The resulting normal stress component with basis 2-2
* s33 (array-like float) — The resulting normal stress component with basis 3-3
¢ s12 (array-like float) — The resulting shear stress component with basis 1-2

class pylife.materiallaws.hookeslaw.HookesLaw2dPlaneStress(FE, nu)
Implementation of the Hooke’s Law under plane stress conditions.

Parameters
* E (float)— Young’s modulus

* nu (float) — Poisson’s ratio. Must be between -1 and 1./2.

Notes
A cartesian coordinate system is assumed. The stress components in 3 direction are assumed to be zero, s33 =
s13 =523 =0.

property E
Get Young’s modulus

property G
Get the sheer modulus

property K
Get the bulk modulus

property nu
Get Poisson’s ratio

strain(s/i, s22, s12)
Get the elastic strain components for given stress components

Parameters
e sll (array-like float)— The normal stress component with basis 1-1
e 822 (array-like float)— The normal stress component with basis 2-2
* s12 (array-like float)— The shear stress component with basis 1-2

Returns
¢ ell (array-like float) — The resulting elastic normal strain component with basis 1-1
* €22 (array-like float) — The resulting elastic normal strain component with basis 2-2
* e33 (array-like float) — The resulting elastic normal strain component with basis 3-3

* g12 (array-like float) — The resulting elastic engineering shear strain component with basis
1-2, (1. /2 * g12 is the tensor component)

stress(ell, e22, gl2)
Get the stress components for given elastic strain components

Parameters
e ell (array-like float)— The elastic normal strain component with basis 1-1

* e22 (array-like float) - The elastic normal strain component with basis 2-2

6.4. Materiallaws 103

https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float

pyLife Documentation, Release 2.0.0

* g12 (array-like float) — The elastic engineering shear strain component with basis
1-2, (1. /2 * gl12 is the tensor component)

Returns
¢ s11 (array-like float) — The resulting normal stress component with basis 1-1
* 22 (array-like float) — The resulting normal stress component with basis 2-2

* s12 (array-like float) — The resulting shear stress component with basis 1-2

class pylife.materiallaws.hookeslaw.HookesLaw3d(E, nu)

Implementation of the Hooke’s Law in three dimensions.

Parameters

* E (float) - Young’s modulus

* nu (float) — Poisson’s ratio. Must be between -1 and 1./2

Notes

A cartesian coordinate system is assumed.

property E

Get Young’s modulus

property G

Get the sheer modulus

property K

Get the bulk modulus

property nu

Get Poisson’s ratio

strain(s/l, s22, s33, 512, 513, s23)
Get the elastic strain components for given stress components

Parameters

sll (array-like float) — The resulting normal stress component with basis 1-1
s22 (array-like float) — The resulting normal stress component with basis 2-2
s33 (array-1like float)— The resulting normal stress component with basis 3-3
s12 (array-1like float)— The resulting shear stress component with basis 1-2
s13 (array-like float) — The resulting shear stress component with basis 1-3

s23 (array-like float) — The resulting shear stress component with basis 2-3

Returns

ell (array-like float) — The resulting elastic normal strain component with basis 1-1
€22 (array-like float) — The resulting elastic normal strain component with basis 2-2
€33 (array-like float) — The resulting elastic normal strain component with basis 3-3

g12 (array-like float) — The resulting elastic engineering shear strain component with basis
1-2, (1. /2 * g12 is the tensor component)

g13 (array-like float) — The resulting elastic engineering shear strain component with basis
1-3, (1. /2 * g13 is the tensor component)

104

Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float

pyLife Documentation, Release 2.0.0

223 (array-like float) — The resulting elastic engineering shear strain component with basis
2-3, (1. /2 * g23 is the tensor component)

stress(ell, e22,e33,g12, gl3, g23)
Get the stress components for given elastic strain components

Parameters

ell (array-like float) — The elastic normal strain component with basis 1-1
e22 (array-like float) — The elastic normal strain component with basis 2-2
e33 (array-like float)— The elastic normal strain component with basis 3-3

912 (array-1like float) — The elastic engineering shear strain component with basis
1-2, (1. /2 * g12 is the tensor component)

gl13 (array-like float) — The elastic engineering shear strain component with basis
1-3, (1. /2 * g13 is the tensor component)

923 (array-1like float) — The elastic engineering shear strain component with basis
2-3, (1. /2 * g23 is the tensor component)

Returns

s11 (array-like float) — The resulting normal stress component with basis 1-1
s22 (array-like float) — The resulting normal stress component with basis 2-2
s33 (array-like float) — The resulting normal stress component with basis 3-3
s12 (array-like float) — The resulting shear stress component with basis 1-2
s13 (array-like float) — The resulting shear stress component with basis 1-3

s23 (array-like float) — The resulting shear stress component with basis 2-3

6.4.2 The RambergOsgood class

class pylife.materiallaws.RambergOsgood(E, K, n)
Simple implementation of the Ramberg-Osgood relation

Parameters

* E (float)— Young’s Modulus

* K (float) — The strength coefficient

* n (float) — The strain hardening coefficient

Notes

The equation implemented is the one that Wikipedia refers to as “Alternative Formulation”. The parameters n
and k in this are formulation are the Hollomon parameters.

property E

Get Young’s Modulus

property K

Get the strength coefficient

delta_strain(delta_stress)
Calculate the cyclic Masing strain span for a given stress span

6.4. Materiallaws

105

https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://en.wikipedia.org/wiki/Ramberg%E2%80%93Osgood_relationship#Alternative_Formulations

pyLife Documentation, Release 2.0.0

Parameters delta_stress (array-like float)— The stress span
Returns delta_strain — The corresponding strain span

Return type array-like float

Notes

A Masing like behavior is assumed for the material as described in Kerbgrundkonzept.

delta_stress(delta_strain)
Calculate the cyclic Masing stress span for a given strain span

Parameters delta_strain (array-like float)— The strain span
Returns delta_stress — The corresponding stress span

Return type array-like float

Notes

A Masing like behavior is assumed for the material as described in Kerbgrundkonzept.

elastic_strain(stress)
Calculate the elastic strain for a given stress

Parameters stress (array-like float)— The stress
Returns strain — The resulting elastic strain
Return type array-like float

lower_hysteresis(stress, max_stress)
Calculate the lower (relaxation to compression) hysteresis starting from a given maximum stress

Parameters
e stress (array-like float) — The stress (must be below the maximum stress)
* max_stress (float)— The maximum stress of the hysteresis look
Returns lower_hysteresis — The lower hysteresis branch from max_stress all the way to stress
Return type array-like float
Raises ValueError if stress > max_stress -

property n
Get the strain hardening coefficient

plastic_strain(stress)
Calculate the plastic strain for a given stress

Parameters stress (array-like float) — The stress
Returns strain — The resulting plastic strain
Return type array-like float

strain(stress)
Calculate the elastic plastic strain for a given stress

Parameters stress (array-like float) — The stress

Returns strain — The resulting strain

106 Chapter 6. pyLife Reference

https://de.wikipedia.org/wiki/Kerbgrundkonzept#Masing-Verhalten_und_Werkstoffged%C3%A4chtnis
https://de.wikipedia.org/wiki/Kerbgrundkonzept#Masing-Verhalten_und_Werkstoffged%C3%A4chtnis
https://docs.python.org/3.8/library/functions.html#float

pyLife Documentation, Release 2.0.0

Return type array-like float

stress(strain, rtol=1e-05, tol=1e-06)
Calculate the stress for a given strain

Parameters strain (array-like float)— The strain
Returns stress — The resulting stress
Return type array-like float

tangential_compliance (stress)
Calculate the derivative of the strain with respect to the stress for a given stress

Parameters stress (array-like float) — The stress
Returns dstrain — The resulting derivative
Return type array-like float

tangential_modulus (stress)
Calculate the derivative of the stress with respect to the strain for a given stress

Parameters stress (array-like float) — The stress
Returns dstress — The resulting derivative

Return type array-like float

6.4.3 The WoehlerCurve class

class pylife.materiallaws.WoehlerCurve (pandas_obj)

A PylifeSignal accessor for Wohler Curve data.

Wohler Curve (aka SN-curve) determines after how many load cycles at a certain load amplitude the component
is expected to fail.

The signal has the following mandatory keys:

e k_1: The slope of the Wohler Curve

* ND : The cycle number of the endurance limit

* SD : The load level of the endurance limit
The _50 suffixes imply that the values are valid for a 50% probability of failure.
There are the following optional keys:

e k_2 [The slope of the Wohler Curve below the endurance limit] If the key is missing it is assumed to be
infinity, i.e. perfect endurance

e TN [The scatter in cycle direction, (N_90/N_10)] If the key is missing it is assumed to be 1.0 or calculated
from TS if given.

e TS [The scatter in cycle direction, (S_90/S_10)] If the key is missing it is assumed to be 1.0 or calculated
from TN if given.

property ND
property SD

property TN
The load direction scatter value TN.

6.4. Materiallaws 107

pyLife Documentation, Release 2.0.0

property TS
The load direction scatter value TS.

basquin_cycles (load, failure_probability=0.5)
Calculate the cycles numbers from loads according to the Basquin equation.

Parameters

¢ load (array_like) — The load levels for which the corresponding cycle numbers are to
be calculated.

e failure_probability (float, optional) — The failure probability with which the

component should fail when charged with load for the calculated cycle numbers. Default
0.5

Returns cycles — The cycle numbers at which the component fails for the given load values
Return type numpy.ndarray

basquin_load(cycles, failure_probability=0.5)
Calculate the load values from loads according to the Basquin equation.

Parameters

e cycles (array_like) — The cycle numbers for which the corresponding load levels are
to be calculated.

e failure_probability (float, optional) — The failure probability with which the
component should fail when charged with load for the calculated cycle numbers. Default
0.5

Returns cycles — The cycle numbers at which the component fails for the given load values
Return type numpy.ndarray

broadcast (parameter, droplevel=[])
Broadcast the parameter to the object of self.

Parameters parameters (scalar, numpy array or pandas object)— The parameter to
broadcast to

Returns parameter, object

Return type index aligned numerical objects

The

Examples
The behavior of the Broadcaster is best illustrated by examples:

* Broadcasting pandas.Series to a scalar results in a scalar and a pandas. Series.

obj = pd.Series([1.0, 2.0], index=pd.Index(['foo', 'bar'], name='idx'))
obj

idx

foo 1.0

bar 2.0

dtype: float64

108 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.8/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

pyLife Documentation, Release 2.0.0

parameter, obj = Broadcaster(obj).broadcast(5.0)
parameter

array(5.)

obj

idx

foo 1.0

bar 2.0

dtype: float64

* Broadcasting pandas.DataFrame to a scalar results in a pandas.DataFrame and a pandas.Series.

obj = pd.DataFrame({

'foo': [1.0, 2.0],

'bar': [3.0, 4.0]
}, index=pd.Index([1, 2], name="idx'))
obj

parameter, obj = Broadcaster(obj).broadcast(5.0)

parameter
idx

1 5.0
2 5.0

dtype: float64

obj

* Broadcasting pandas.DataFrame to a a pandas.Series results in a pandas.DataFrame and a
pandas.Series, if and only if the index name of the object is None.

obj = pd.Series([1.0, 2.0], index=pd.Index(['tau', 'chi']))

obj
tau 1.0
chi 2.0

dtype: float64

parameter = pd.Series([3.0, 4.0], index=pd.Index(['foo', 'bar'], name='idx

~)
parameter
idx

foo 3.0
bar 4.0

dtype: float64

6.4. Materiallaws 109

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

pyLife Documentation, Release 2.0.0

parameter, obj = Broadcaster(obj).broadcast(parameter)

parameter
idx

foo 3.0
bar 4.0

dtype: float64

obj

cycles (load, failure_probability=0.5)
Calculate the cycles numbers from loads.

Parameters

¢ load (array_like) — The load levels for which the corresponding cycle numbers are to
be calculated.

e failure_probability (float, optional) — The failure probability with which the
component should fail when charged with load for the calculated cycle numbers. Default
0.5

Returns cycles — The cycle numbers at which the component fails for the given load values

Return type numpy.ndarray

Notes
By default the calculation is performed according to the Basquin equation using basquin_cycles().
Derived classes can choose to override this in order to implement a different fatigue law.

fail_if key_missing(keys_to_check, msg=None)
Raise an exception if any key is missing in a self._obj object.

Parameters
e self._obj (pandas.DataFrame or pandas.Series)— The object to be checked
* keys_to_check (1ist)— A list of keys that need to be available in self._obj

Raises
e AttributeError —if self._obj is neither a pandas.DataFrame nor a pandas.Series

e AttributeError - if any of the keys is not found in the self._obj’s keys.

Notes

If self._obj is a pandas.DataFrame, all keys of keys_to_check meed to be found in the self._obj.columns.
If self._obj is a pandas.Series, all keys of keys_to_check meed to be found in the self._obj.index.

See also:

get_missing_keys(), stresssignal.StressTensorVoigt

property failure_probability

110 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/exceptions.html#AttributeError

pyLife Documentation, Release 2.0.0

classmethod from_parameters(**kwargs)
Make a signal instance from a parameter set.

This is a convenience function to instantiate a signal from individual parameters rather than pandas objects.

A signal class like

@pd.api.extensions.register_dataframe_accessor('foo_signal')
class FooSignal(PylifeSignal):
pass

The following two blocks are equivalent:

pd.Series({'foo': 1.0, 'bar': 2.0}).foo_signal

FooSignal. from_parameters(foo=1.0, bar=1.0)

get_missing_keys (keys_to_check)
Get a list of missing keys that are needed for a self._obj object.

Parameters keys_to_check (1ist) — A list of keys that need to be available in self._obj
Returns missing_keys — a list of missing keys
Return type list

Raises AttributeError — If self._obj is neither a pandas.DataFrame nor a pandas.Series

Notes

If self._obj is a pandas.DataFrame, all keys of keys_to_check not found in the self._obj.columns are re-
turned.

If self._obj is a pandas.Series, all keys of keys_to_check not found in the self._obj.index are returned.

property k_1
The second Wohler slope.

property k_2
The second Wohler slope.

keys()
Get a list of missing keys that are needed for a signal object.

Returns keys — a pandas index of keys
Return type pd.Index

Raises AttributeError - If self._obj is neither a pandas.DataFrame nor a pandas.Series

6.4.

Materiallaws 111

https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/exceptions.html#AttributeError

pyLife Documentation, Release 2.0.0

Notes

If self._obj is a pandas.DataFrame, the self._obj.columns are returned.
If self._obj is a pandas.Series, the self._obj.index are returned.

load(cycles, failure_probability=0.5)
Calculate the load values from loads.

Parameters

e cycles (array_like) — The cycle numbers for which the corresponding load levels are
to be calculated.

e failure_probability (float, optional) — The failure probability with which the
component should fail when charged with load for the calculated cycle numbers. Default
0.5

Returns cycles — The cycle numbers at which the component fails for the given load values

Return type numpy.ndarray

Notes

By default the calculation is performed according to the Basquin equation using basquin_cycles().
Derived classes can choose to override this in order to implement a different fatigue law.

miner_elementary()
Set k_2 to k_1 according Miner Elementary method (k_2 =k_1).

Return type self

miner_haibach()
Set k_2 to value according Miner Haibach method (k_2=2 *k_1-1).

Return type self

to_pandas()
Expose the pandas object of the signal.

Returns pandas_object — The pandas object representing the signal

Return type pd.DataFrame or pd.Series

Notes

The default implementation just returns the object given when instantiating the signal class. Derived classes
may return a modified object or augmented, if they store some extra information.

By default the object is not copied. So make a copy yourself, if you intent to modify it.

transform_to_failure_probability (failure_probability)

112 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pyLife Documentation, Release 2.0.0

6.4.4 The true_stress_strain module

Simple conversion functions from technical stress/strain to true stress/strain including fracture stress/strain.

pylife.materiallaws.true_stress_strain.true_fracture_strain(reduction_area_fracture)

Calculation of the true frature strain (in the FKM Non Linear (static assessment)) :param reduction_area_fracture:

directly measured on the fractures sample :type reduction_area_fracture: float
Returns true_fracture_strain — descrivbes the calculated true fracture strain.

Return type float

pylife.materiallaws.true_stress_strain.true_fracture_stress(fracture_force, initial_cross_section,

reduction_area_fracture)
Calculation of the true fracture stress (euqation FKM Non-linear (static assessment))

Parameters
» fracture_force (float) — from experimental results

e initial_cross_section (float) — cross section of initial tensile sample.

» reduction_area_fracture (float) — directly measured on the fractures sample.

Returns true_fracture_stress — calculated true fracture stress of the sample.
Return type float

pylife.materiallaws.true_stress_strain.true_strain(tech_strain)
Calculation of true strain data (from experimental data generated by tensile experiments)

Parameters tech_strain (array-like float)-—
Returns true_strain
Return type array-like float

pylife.materiallaws.true_stress_strain.true_stress(tech_stress, tech_strain)
Calculate the true stress data from technical data

Parameters
* tech_stress (array-like float) — stress data from tensile experiments
» tech_strain (1ist of float) - strain data from tensile experiments
Returns true_stress

Return type array-like float

6.5 Materialdata

6.5.1 The woehler module

Module description

The woehler module overview

A module for Wohler curve fatigue data analysis

6.5. Materialdata

113

https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float

pyLife Documentation, Release 2.0.0

Overview

FatigueData is a signal accessor class to handle fatigue data from a Wohler test. They can be analyzed by several
analyzers according to your choice

Elementary only treats the finite zone of the fatigue data and calculates the slope and the scatter in lifetime
direction. It is the base class for all other analyzers

Probit calculates parameters not calculated by Elementary using the Probit method.
MaxLikeInf calculates parameters not calculated by Elementary using the maximum likelihood method.

MaxLikeFull calculates all parameters using the maximum likelihood method. The result from Elementary
is used as start values.

Fatigue data handling

The FatigueData class

class pylife.materialdata.woehler.FatigueData(pandas_obj)

class for fatigue data

Mandatory keys are
¢ load : float, the load level
* cycles : float, the cycles of failure or runout
e fracture: bool, True iff the test is a runout

conservative_fatigue_limit()
Sets a lower fatigue limit that what is expected from the algorithm given by Mustafa Kassem. For calculating
the fatigue limit, all amplitudes where runouts and fractures are present are collected. To this group, the
maximum amplitude with only runouts present is added. Then, the fatigue limit is the mean of all these
amplitudes.

Return type self
See also:
Kassem, Mustafa

property cycles
the cycle numbers

property fatigue_limit
The start value of the load endurance limit.

It is determined by searching for the lowest load level before the appearance of a runout data point, and the
first load level where a runout appears. Then the median of the two load levels is the start value.

property finite_zone
All the tests with load levels above fatigue_limit, i.e. the finite zone

property fractured_loads

property fractures
Only the fracture tests

property infinite_zone
All the tests with load levels below fatigue_limit, i.e. the infinite zone

114

Chapter 6. pyLife Reference

pyLife Documentation, Release 2.0.0

property load
The load levels

property max_runout_load
property mixed_loads
property non_fractured_loads

property num_fractures
The number of fractures

property num_runouts
The number of runouts

property num_tests
The number of tests

property runout_loads

property runouts
Only the runout tests

Analyzers

The Elementary class

class pylife.materialdata.woehler.Elementary (fatigue_ data)
Base class to analyze SN-data.

The common base class for all SN-data analyzers calculates the first estimation of a Wohler curve in the finite
zone of the SN-data. It calculates the slope k, the fatigue limit SD, the transition cycle number ND and the scatter
in load direction //TN.

The result is just meant to be a first guess. Derived classes are supposed to use those first guesses as starting
points for their specific analysis. For that they should implement the method _specific_analysis().

analyze (**kwargs)
Analyze the SN-data.

Parameters **kwargs : kwargs arguments
Arguments to be passed to the derived class

bayesian_information_criterion()
The Bayesian Information Criterion

Bayesian Information Criterion is a criterion for model selection among a finite set of models;
the model with the lowest BIC is preferred. https://www.statisticshowto.datasciencecentral.com/
bayesian-information-criterion/

Basically the lower the better the fit.

pearl_chain_estimator()

6.5. Materialdata 115

https://www.statisticshowto.datasciencecentral.com/bayesian-information-criterion/
https://www.statisticshowto.datasciencecentral.com/bayesian-information-criterion/

pyLife Documentation, Release 2.0.0

The Probit class

class pylife.materialdata.woehler.Probit (fatigue_data)
fitter()

The MaxLikeInf class

class pylife.materialdata.woehler.MaxLikeInf (futigue_data)

The MaxLikeFull class

class pylife.materialdata.woehler.MaxLikeFull (fatigue_data)

The Bayesian class

class pylife.materialdata.woehler.Bayesian(fatigue_data)
A Wohler analyzer using Bayesian optimization

Warning: We are considering switching from pymc3 to GPyOpt as calculation engine in the future. Maybe
this will lead to breaking changes without new major release.

Helpers

The pearl_chain module

class pylife.materialdata.woehler.pearl_chain.PearlChainProbability (fractures, slope)
property normed_cycles

property normed_load

The likelihood module

class pylife.materialdata.woehler.likelihood.Likelihood (fatigue_data)
Calculate the likelihood a fatigue dataset matches with Wohler curve parameters.

likelihood_£finite(SD, k_I, ND, TN)

likelihood_infinite(SD, TS)
Produces the likelihood functions that are needed to compute the endurance limit and the scatter in load
direction. The likelihood functions are represented by a cummalative distribution function. The likelihood
function of a runout is 1-Li(fracture).

Parameters
* SD — Endurnace limit start value to be optimzed, unless the user fixed it.

* TS — The scatter in load direction 1/TS to be optimzed, unless the user fixed it.

116 Chapter 6. pyLife Reference

pyLife Documentation, Release 2.0.0

Returns Sum of the log likelihoods. The negative value is taken since optimizers in statistical
packages usually work by minimizing the result of a function. Performing the maximum
likelihood estimate of a function is the same as minimizing the negative log likelihood of the
function.

Return type neg_sum_lolli

likelihood_total(SD, TS, k_I, ND, TN)
Produces the likelihood functions that are needed to compute the parameters of the woehler curve. The
likelihood functions are represented by probability and cummalative distribution functions. The likelihood
function of a runout is 1-Li(fracture). The functions are added together, and the negative value is returned
to the optimizer.

Parameters
* SD — Endurnace limit start value to be optimzed, unless the user fixed it.

e TS — The scatter in load direction 1/TS to be optimzed, unless the user fixed it.

k_1 — The slope k_1 to be optimzed, unless the user fixed it.
* ND — Load-cycle endurance start value to be optimzed, unless the user fixed it.
e TN — The scatter in load-cycle direction 1/TN to be optimzed, unless the user fixed it.

Returns Sum of the log likelihoods. The negative value is taken since optimizers in statistical
packages usually work by minimizing the result of a function. Performing the maximum
likelihood estimate of a function is the same as minimizing the negative log likelihood of the
function.

Return type neg_sum_lolli

6.6 Mesh utilities

6.6.1 The mesh module

Overview

Helper to process mesh based data

Data that is distributed over a geometrical body, e.g. a stress tensor distribution on a component, is usually transported
via a mesh. The meshes are a list of items (e.g. nodes or elements of a FEM mesh), each being described by the
geometrical coordinates and the local data values, like for example the local stress tensor data.

In a plain mesh (see P1ainMesh) there is no further relation between the items is known, whereas a complete FEM
mesh (see Mesh) there is also information on the connectivity of the nodes and elements.

Examples

Read in a mesh from a vmap file:

>>> df = (vm = pylife.vmap.VMAPImport('demos/plate_with_hole.vmap')
.make_mesh('1', 'STATE-2')
.join_variable('STRESS_CAUCHY"')
.join_variable('DISPLACEMENT")
.to_frame())

(continues on next page)

6.6. Mesh utilities 117

pyLife Documentation, Release 2.0.0

(continued from previous page)

>>> df.head()

X y z S11 S22 S33 S12 S13

—S23 dx dy dz
element_id node_id
1 1734 14.897208 5.269875 0.0 27.080811 6.927080 0.0 -13.687358 0.0
0.0 0.005345 0.000015 0.0

1582 14.555333 5.355806 0.0 28.319006 1.178649 0.0 -10.732705 0.0
—~0.0 0.005285 0.000003 0.0

1596 14.630658 4.908741 0.0 47.701195 5.512213 0.0 -17.866833 0.0
0.0 0.005376 0.000019 0.0

4923 14.726271 5.312840 0.0 27.699907 4.052865 0.0 -12.210032 0.0
0.0 0.005315 0.000009 0.0

4924 14.592996 5.132274 0.0 38.010101 3.345431 0.0 -14.299768 0.0
0.0 0.005326 0.000013 0.0
Get the coordinates of the mesh.
>>> df.plain_mesh.coordinates.head()

X y Z

element_id node_id
1 1734 14.897208 5.269875 0.0

1582 14.555333 5.355806 0.0

1596 14.630658 4.908741 0.0

4923 14.726271 5.312840 0.0

4924 14.592996 5.132274 0.0

Now the same with a 2D mesh:

>>> df.drop(columns=['z"']) .plain_mesh.coordinates.head()

X y

element_id node_id

1 1734
1582
1596
4923
4924

14.897208
14.555333
14.630658
14.726271
14.592996

5.269875
5.355806
4.908741
5.312840
5.132274

The signal classes

The PlainMesh class

class pylife.mesh.PlainMesh(pandas_obj)
DataFrame accessor to access plain 2D and 3D mesh data, i.e. without connectivity

Raises AttributeError — if at least one of the columns x, y is missing

118

Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/exceptions.html#AttributeError

pyLife Documentation, Release 2.0.0

Notes

The PlainMesh describes meshes whose only geometrical information is the coordinates of the nodes or elements.
Unlike Mesh they don’t know about connectivity, not even about elements and nodes.

See also:

Mesh: accesses meshes with connectivity information pandas.api.extensions.
register_dataframe_accessor(): concept of DataFrame accessors

broadcast (parameter, droplevel=[])
Broadcast the parameter to the object of self.

Parameters parameters (scalar, numpy array or pandas object)— The parameter to
broadcast to

Returns parameter, object
Return type index aligned numerical objects

The

Examples
The behavior of the Broadcaster is best illustrated by examples:

* Broadcasting pandas.Series to a scalar results in a scalar and a pandas.Series.

obj = pd.Series([1.0, 2.0], index=pd.Index(['foo', 'bar'], name='idx'))

obj
idx
foo 1.0
bar 2.0

dtype: float64

parameter, obj = Broadcaster(obj).broadcast(5.0)

parameter
array(5.)
obj

idx

foo 1.0
bar 2.0

dtype: float64

* Broadcasting pandas .DataFrame to a scalar results in a pandas.DataFrame and a pandas.Series.

obj = pd.DataFrame({
'foo': [1.0, 2.0],
'bar': [3.0, 4.0]

(continues on next page)

6.6. Mesh utilities 119

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.register_dataframe_accessor.html#pandas.api.extensions.register_dataframe_accessor
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.register_dataframe_accessor.html#pandas.api.extensions.register_dataframe_accessor
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

pyLife Documentation, Release 2.0.0

(continued from previous page)

}, index=pd.Index([1, 2], name='"idx'"))
obj

parameter, obj = Broadcaster(obj).broadcast(5.0)

parameter
idx

1 5.0
2 5.0

dtype: float64

obj

* Broadcasting pandas.DataFrame to a a pandas.Series results in a pandas.DataFrame and a
pandas.Series, if and only if the index name of the object is None.

obj = pd.Series([1.0, 2.0], index=pd.Index(['tau', 'chi']))

obj
tau 1.0
chi 2.0

dtype: float64

parameter = pd.Series([3.0, 4.0], index=pd.Index(['foo', 'bar'], name='idx

D)
parameter
idx

foo 3.0
bar 4.0

dtype: float64

parameter, obj = Broadcaster(obj) .broadcast(parameter)

parameter
idx

foo 3.0
bar 4.0

dtype: float64

obj

property coordinates
Returns the coordinate colums of the accessed DataFrame

Returns coordinates — The coordinates x, y and if 3D z of the accessed mesh

Return type pandas.DataFrame

120 Chapter 6. pyLife Reference

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

pyLife Documentation, Release 2.0.0

property dimensions
The dimensions of the mesh (2 for 2D and 3 for 3D)

Note: If all the coordinates in z-direction are equal the mesh is considered 2D.

fail_if key_missing(keys_to_check, msg=None)
Raise an exception if any key is missing in a self._obj object.

Parameters
» self._obj (pandas.DataFrame or pandas.Series)— The object to be checked
* keys_to_check (1ist)— A list of keys that need to be available in self._obj

Raises
e AttributeError — if self._obj is neither a pandas.DataFrame nor a pandas.Series

e AttributeError — if any of the keys is not found in the self._obj’s keys.

Notes

If self._obj is a pandas.DataFrame, all keys of keys_to_check meed to be found in the self._obj.columns.
If self._obj is a pandas.Series, all keys of keys_to_check meed to be found in the self._obj.index.

See also:

get_missing_keys(), stresssignal.StressTensorVoigt

classmethod from_parameters(**kwargs)
Make a signal instance from a parameter set.

This is a convenience function to instantiate a signal from individual parameters rather than pandas objects.

A signal class like

@pd.api.extensions.register_dataframe_accessor('foo_signal')
class FooSignal (PylifeSignal):
pass

The following two blocks are equivalent:

pd.Series({'foo': 1.0, 'bar': 2.0}).foo_signal

FooSignal. from_parameters(foo=1.0, bar=1.0)

get_missing_keys (keys_to_check)
Get a list of missing keys that are needed for a self._obj object.

Parameters keys_to_check (1ist)— A list of keys that need to be available in self._obj
Returns missing_keys — a list of missing keys
Return type list

Raises AttributeError —If self._obj is neither a pandas.DataFrame nor a pandas.Series

6.6. Mesh utilities 121

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/exceptions.html#AttributeError

pyLife Documentation, Release 2.0.0

Notes

If self._obj is a pandas.DataFrame, all keys of keys_to_check not found in the self._obj.columns are re-

turned.

If self._obj is a pandas.Series, all keys of keys_to_check not found in the self._obj.index are returned.

keys()
Get a list of missing keys that are needed for a signal object.

Returns keys — a pandas index of keys

Return type pd.Index

Raises AttributeError — If self._obj is neither a pandas.DataFrame nor a pandas.Series

Notes

If self._obj is a pandas.DataFrame, the self._obj.columns are returned.
If self._obj is a pandas.Series, the self._obj.index are returned.

to_pandas()
Expose the pandas object of the signal.

Returns pandas_object — The pandas object representing the signal

Return type pd.DataFrame or pd.Series

Notes

The default implementation just returns the object given when instantiating the signal class. Derived classes
may return a modified object or augmented, if they store some extra information.

By default the object is not copied. So make a copy yourself, if you intent to modify it.

The Mesh class

class pylife.mesh.Mesh(pandas_obj)
DataFrame accessor to access FEM mesh data (2D and 3D)

Raises
» AttributeError —if at least one of the columns x, y is missing

e AttributeError — if the index of the DataFrame is not a two level Multilndex with the
names node_id and element_id

122 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/exceptions.html#AttributeError

pyLife Documentation, Release 2.0.0

Notes

The Mesh describes how we expect FEM data to look like. It consists of nodes identified by node_id and elements
identified by element_id. A node playing a role in several elements and an element consists of several nodes. So
in the DataFrame a node_id can appear multiple times (for each element, the node is playing a role in). Likewise
each element_id appears multiple times (for each node the element consists of).

The combination node_id:element_id however, is unique. So the table is indexed by a pandas.MultiIndex
with the level names node_id, element_id.

See also:

PlainMesh: accesses meshes without connectivity information pandas.api.extensions.
register_dataframe_accessor(): concept of DataFrame accessors

Examples

For an example see hotspot.

broadcast (parameter, droplevel=[])
Broadcast the parameter to the object of self.

Parameters parameters (scalar, numpy array or pandas object)— The parameter to
broadcast to

Returns parameter, object
Return type index aligned numerical objects

The

Examples
The behavior of the Broadcaster is best illustrated by examples:

¢ Broadcasting pandas.Series to a scalar results in a scalar and a pandas. Series.

obj = pd.Series([1.0, 2.0], index=pd.Index(['foo', 'bar'], name='idx'))

obj
idx
foo 1.0
bar 2.0

dtype: float64

parameter, obj = Broadcaster(obj).broadcast(5.0)

parameter

array(5.)

obj

6.6. Mesh utilities 123

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.MultiIndex.html#pandas.MultiIndex
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.register_dataframe_accessor.html#pandas.api.extensions.register_dataframe_accessor
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.register_dataframe_accessor.html#pandas.api.extensions.register_dataframe_accessor
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

pyLife Documentation, Release 2.0.0

idx
foo 1.0
bar 2.0

dtype: float64

Broadcasting pandas .DataFrame to a scalar results in a pandas .DataFrame and apandas. Series.

obj = pd.DataFrame ({

"foo': [1.0, 2.0],

'bar': [3.0, 4.0]
}, index=pd.Index([1l, 2], name='idx'))
obj

parameter, obj = Broadcaster(obj).broadcast(5.0)

parameter
idx

1 5.0
2 5.0

dtype: float64

obj

Broadcasting pandas.DataFrame to a a pandas.Series results in a pandas.DataFrame and a
pandas.Series, if and only if the index name of the object is None.

obj = pd.Series([1.0, 2.0], index=pd.Index(['tau', 'chi']))
obj

tau 1.0
chi 2.0
dtype: float64

parameter = pd.Series([3.0, 4.0], index=pd.Index(['foo', 'bar'], name='idx

~")

parameter
idx

foo 3.0
bar 4.0

dtype: float64

parameter, obj = Broadcaster(obj) .broadcast(parameter)

parameter
idx

foo 3.0
bar 4.0

dtype: float64

124

Chapter 6. pyLife Reference

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

pyLife Documentation, Release 2.0.0

obj

property connectivity
The connectivity of the mesh.

property coordinates
Returns the coordinate colums of the accessed DataFrame

Returns coordinates — The coordinates x, y and if 3D z of the accessed mesh
Return type pandas.DataFrame

property dimensions
The dimensions of the mesh (2 for 2D and 3 for 3D)

Note: If all the coordinates in z-direction are equal the mesh is considered 2D.

fail_if key_missing(keys_to_check, msg=None)
Raise an exception if any key is missing in a self._obj object.

Parameters
» self._obj (pandas.DataFrame or pandas.Series)— The object to be checked
* keys_to_check (1ist)— A list of keys that need to be available in self._obj

Raises
e AttributeError —if self._obj is neither a pandas.DataFrame nor a pandas.Series

e AttributeError - if any of the keys is not found in the self._obj’s keys.

Notes

If self._obj is a pandas.DataFrame, all keys of keys_to_check meed to be found in the self._obj.columns.
If self._obj is a pandas.Series, all keys of keys_to_check meed to be found in the self._obj.index.

See also:

get_missing_keys(), stresssignal.StressTensorVoigt

classmethod from_parameters(**kwargs)
Make a signal instance from a parameter set.

This is a convenience function to instantiate a signal from individual parameters rather than pandas objects.

A signal class like

@pd.api.extensions.register_dataframe_accessor('foo_signal')
class FooSignal (PylifeSignal):
pass

The following two blocks are equivalent:

pd.Series({'foo': 1.0, 'bar': 2.0}).foo_signal

FooSignal. from_parameters(foo=1.0, bar=1.0)

6.6.

Mesh utilities 125

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/exceptions.html#AttributeError

pyLife Documentation, Release 2.0.0

get_missing_keys (keys_to_check)
Get a list of missing keys that are needed for a self._obj object.

Parameters keys_to_check (1ist)— A list of keys that need to be available in self._obj
Returns missing_Kkeys — a list of missing keys
Return type list

Raises AttributeError — If self._obj is neither a pandas.DataFrame nor a pandas.Series

Notes
If self._obj is a pandas.DataFrame, all keys of keys_to_check not found in the self._obj.columns are re-
turned.

If self._obj is a pandas.Series, all keys of keys_to_check not found in the self._obj.index are returned.

keys()
Get a list of missing keys that are needed for a signal object.

Returns keys — a pandas index of keys
Return type pd.Index

Raises AttributeError — If self._obj is neither a pandas.DataFrame nor a pandas.Series

Notes

If self._obj is a pandas.DataFrame, the self._obj.columns are returned.
If self._obj is a pandas.Series, the self._obj.index are returned.

to_pandas()
Expose the pandas object of the signal.

Returns pandas_object — The pandas object representing the signal

Return type pd.DataFrame or pd.Series

Notes

The default implementation just returns the object given when instantiating the signal class. Derived classes
may return a modified object or augmented, if they store some extra information.

By default the object is not copied. So make a copy yourself, if you intent to modify it.

vtk_dataQ
Make VTK data structure easily plot the mesh with pyVista.

Returns

* offsets (ndarray) — An empty numpy array as pyVista.UnstructuredGrid() still de-
mands the argument for the offsets, even though VTK>9 does not accept it.

e cells (ndarray) — The location of the cells describing the points in a way pyVista.
UnstructuredGrid() needs it

cell_types (ndarray) — The VTK code for the cell types (see https://github.com/Kitware/
VTK/blob/master/Common/DataModel/vtkCell Type.h)

* points (ndarray) — The coordinates of the cell points

126 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://github.com/Kitware/VTK/blob/master/Common/DataModel/vtkCellType.h
https://github.com/Kitware/VTK/blob/master/Common/DataModel/vtkCellType.h

pyLife Documentation, Release 2.0.0

Notes

This is a convenience function to easily plot a 3D mesh with pyVista. It prepares a data structure which
can be passed to pyVista.UnstructuredGrid()

Example

>>> import pyvista as pv

>>> grid = pv.UnstructuredGrid(*our_mesh.mesh.vtk_data())

>>> plotter = pv.Plotter(window_size=[1920, 1080])

>>> plotter.add_mesh(grid, scalars=our_mesh.groupby('element_id')['val'].mean().
—to_numpy ()

>>> plotter.show()

Note the * that needs to be added when calling pv.UnstructuredGrid().

6.6.2 The HotSpot class

class pylife.mesh.HotSpot (pandas_obj)
calc(value_key, limit_frac=0.9, artefact_threshold=None)
Calculates hotspots on a FE mesh

Parameters

¢ value_key (string) — Column name of the field variable, on which the Hot Spot calcu-
lation is done.

e limit_frac (float, optional) — Fraction of the max field variable. Example: If you
set limit_frac = 0.9, the function finds all nodes and regions which are >= 90% of the
maximum value of the field variable. default: 0.9

e artefact_threshold (float, optional) — If set all the values above the artfe-
fact_threshold limit are not taken into account for the calculation of the maximum value.
This is meant to be used for numerical artefacts which would take the threshold value for
hotspot determined by limit_frac to such a high level, that all the relevant hotspots would
“hide” underneath it.

Returns hotspots — A Series of integers with the same index of the accessed mesh object indi-
cating which mesh point belongs to which hotspot. A value 0 means below the limit_frac.

Return type pandas.Series

Notes

A loop is defined in the following way:
* Select the node with the maximum stress value
* Find all elements > limit_frac belonging to this node
* Select all nodes > limit_frac belonging to these elements

* Start loop again until all nodes > limit_frac are assigned to a hotspot

Attention: All stress values are node based, not integration point based

6.6. Mesh utilities 127

https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

pyLife Documentation, Release 2.0.0

6.6.3 The Gradient class

class pylife.mesh.Gradient (pandas_obj)
Computes the gradient of a value in a 3D mesh

Accesses a mesh registered in meshsignal

Raises
» AttributeError — if at least one of the columns x, y is missing

e AttributeError — if the index of the DataFrame is not a two level Multilndex with the
names node_id and element_id

Notes

The gradient is calculated by fitting a plane into the nodes of each coordinate and the neighbor nodes using least
square fitting.

The method is described in a thread on stackoverflow.

gradient_of (value_key)
returns the gradient
Parameters value_key (str)— The key of the value that forms the gradient. Needs to be found
in df

Returns gradient — A table describing the gradient indexed by node_id. The keys
for the components of the gradients are ['d{value_key}_dx', 'd{value_key}_dy',
'd{value_key}_dz'].

Return type pd.DataFrame

6.6.4 The Meshmapper class

class pylife.mesh.Meshmapper (pandas_obj)
Mapper to map points of one mesh to another

Notes

The accessed DataFrame needs to be accessible by a P1ainMesh.
process (from_df, value_key, method='"linear")
Performs the mapping

Parameters from_df (pandas.DataFrame accessible by a P1ainMesh.) — The DataFrame that
is to be mapped to the accessed one. Needs to have the same dimensions (2D or 3D) as the

accessed one

128 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://docs.python.org/3.8/library/exceptions.html#AttributeError
https://math.stackexchange.com/questions/2627946/how-to-approximate-numerically-the-gradient-of-the-function-on-a-triangular-mesh#answer-2632616
https://docs.python.org/3.8/library/stdtypes.html#str

pyLife Documentation, Release 2.0.0

6.7 VMAP Interface

6.7.1 VMAP interface for pyLife

VMAP is a vendor-neutral standard for CAE data storage to enhance interoperability in virtual engineering workflows.

As for now, the VMAP support in pyLife is in an experimental stage. That is mainly because there are not many other
software packages available that do support it. Nevertheless we would like to encourage the usage of VMAP, so we
decided to put the experimental code into the release.

pyLife supports a growing subset of the VM AP standard. That means that only features relevant for pyLife’s addressed
real life use cases are or will be implemented. Probably there are features missing, that are important for some valid
use cases. In that case please file a feature request at https://github.com/boschresearch/pylife/issues

6.7.2 Reading a VMAP file

The most common use case is to get the element nodal stress tensor for a certain geometry 1 and a certain load state
STATE-2 out of the vmap file. The vmap interface provides you the nodal geometry (node coordinates), the mesh
connectivity index and the field variables.

You can retrieve a DataFrame of the mesh with the desired variables in just one statement.

>>> (pylife.vmap.VMAPImport('demos/plate_with_hole.vmap')
.make_mesh('1', 'STATE-2'")
.join_coordinates()
.join_variable('STRESS_CAUCHY')
.join_variable('E")
.to_frame())

X y A S11 S22 S33 S12 S13 .
-S23 El1 E22 E33 E12 E13 E23
element_id node_id
1 1734 14.897208 5.269875 0.0 27.080811 6.927080 0.0 -13.687358 0.0 .
~0.0 0.000119 -0.000006 0.0 -0.000169 0.0 0.0
1582 14.555333 5.355806 0.0 28.319006 1.178649 0.0 -10.732705 0.0 .
0.0 0.000133 -0.000035 0.0 -0.000133 0.0 0.0
1596 14.630658 4.908741 0.0 47.701195 5.512213 0.0 -17.866833 0.0 .
0.0 0.000219 -0.000042 0.0 -0.000221 0.0 0.0
4923 14.726271 5.312840 0.0 27.699907 4.052865 0.0 -12.210032 0.0 .
—~0.0 0.000126 -0.000020 0.0 -0.000151 0.0 0.0
4924 14.592996 5.132274 0.0 38.010101 3.345431 0.0 -14.299768 0.0 .

0.0 0.000176 -0.000038 0.0 -0.000177 0.0 0.0

4770 3812 -13.189782 -5.691876 0.0 36.527439 2.470588 0.0 -14.706686 0.0 .
0.0 0.000170 -0.000040 0.0 -0.000182 0.0 0.0

12418 -13.560289 -5.278386 0.0 32.868889 3.320898 0.0 -14.260107 0.0 .
0.0 0.000152 -0.000031 0.0 -0.000177 0.0 0.0

14446 -13.673285 -5.569107 0.0 34.291058 3.642457 0.0 -13.836027 0.0 .
0.0 0.000158 -0.000032 0.0 -0.000171 0.0 0.0

14614 -13.389065 -5.709927 0.0 36.063541 2.828889 0.0 -13.774759 0.0 .
0.0 0.000168 -0.000038 0.0 -0.000171 0.0 0.0

14534 -13.276068 -5.419206 0.0 33.804211 2.829817 0.0 -14.580153 0.0 .
0.0 0.000157 -0.000035 0.0 -0.000181 0.0 0.0

6.7. VMAP Interface 129

https://www.vmap.eu.com/
https://github.com/boschresearch/pylife/issues

pyLife Documentation, Release 2.0.0

[37884 rows x 15 columns]

Supported features

So far the following data can be read from a vmap file

Geometry

* node positions

¢ node element index

Field variables

Any field variables can be read and joined to the node element index from the following locations:

¢ clement
e node

¢ element nodal

In particular, field variables at integration point location cannot cannot be read, as that would require extrapolating
them to the node positions. This functionality is not available in pyLife.

The VMAPImport Class

class pylife.vmap.VMAPImport (filename)

The interface class to import a vmap file
Parameters filename (string)— The path to the vmap file to be read

Raises Exception — If the file cannot be read an exception is raised. So far any exception from the
h5py module is passed through.

element_sets(geometry)
Returns a list of the element_sets present in the vmap file

filter_element_set (element_set)
Filters a node set out of the current mesh

Parameters element_set (string, optional) - The element set defined in the vmap file as
geometry set

Return type self
Raises APIUseError — If the mesh has not been initialized using make_mesh ()

filter_node_set (node_set)
Filters a node set out of the current mesh

Parameters node_set (string) — The node set defined in the vmap file as geometry set
Return type self
Raises APIUseError — If the mesh has not been initialized using make_mesh ()

geometries()
Returns a list of geometry strings of geometries present in the vmap data

130

Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/exceptions.html#Exception

pyLife Documentation, Release 2.0.0

join_coordinates()
Join the coordinates of the predefined geometry in the mesh

Return type self
Raises APIUseError — If the mesh has not been initialized using make_mesh ()

Examples

Receive the mesh with the node coordinates

>>> pylife.vmap.VMAPImport('demos/plate_with_hole.vmap') .make_mesh('1').join_
—coordinates() .to_frame()

X y Z

element_id node_id

1 1734 14.897208 5.269875 0.0
1582 14.555333 5.355806 0.0
1596 14.630658 4.908741 0.0
4923 14.726271 5.312840 0.0
4924 14.592996 5.132274 0.0

4770 3812 -13.189782 -5.691876

12418 -13.560289 -5.278386
14446 -13.673285 -5.569107
14614 -13.389065 -5.709927
14534 -13.276068 -5.419206

(=B — I — I —]
(== — I — I — T

[37884 rows x 3 columns]

join_variable (var_name, state=None, column_names=None)
Joins a field output variable to the mesh

Parameters
e var_name (string) — The name of the field variables

e state (string, opional) — The load state of which the field variable is to be read
If not given, the last defined state, either defined in make_mesh() or defeined in
join_variable() is used.

¢ column_names (list of string, optional) — The names of the columns names to
be used in the DataFrame If not provided, it will be chosen according to the list shown
below. The length of the list must match the dimension of the variable.

Return type self

Raises
* APIUseError — if the mesh has not been initialized using make_mesh()
» KeyError — if the geometry, state or varname is not found of if the vmap file is corrupted
* KeyError — if there are no column names given and known for the variable.

e ValueError - if the length of the column_names does not match the dimension of the
variable

. VMAP Interface 131

https://docs.python.org/3.8/library/exceptions.html#KeyError
https://docs.python.org/3.8/library/exceptions.html#KeyError
https://docs.python.org/3.8/library/exceptions.html#ValueError

pyLife Documentation, Release 2.0.0

Notes

The mesh must be initialized with make_mesh (). The final DataFrame can be retrieved with to_frame().

If the column_names argument is not provided the following column names are chosen

* ‘DISPLACEMENT’: ['dx",

'E22",

dy',
* ‘STRESS_CAUCHY’: ['S11",

« ‘E: ['Ell", "E33"',

's22', 'S33', 'S12',

ldzl]

'E12', 'E13', 'E23']

If that fails a KeyError exception is risen.

Examples

'S13', 'S23']

Receiving the ‘DISPLACEMENT’ of ‘STATE-1", the stress and strain tensors of ‘STATE-2’

S33 S12 S13 .

0.0 -13.687358 0.0 0.

0.0 -10.732705 0.0 0.

0.0 -17.866833 0.0 0.

0.0 -12.210032 0.0 0.

0.0 -14.299768 0.0 0.

0.0 -14.706686 0.0 0.

0.0 -14.260107 0.0 0.

0.0 -13.836027 0.0 0.

0.0 -13.774759 0.0 0.

0.0 -14.580153 0.0 0.

>>> (pylife.vmap.VMAPImport('demos/plate_with_hole.vmap')
.make_mesh('1")
.join_variable('DISPLACEMENT', 'STATE-1'")
.join_variable('STRESS_CAUCHY', 'STATE-2')
.join_variable('E').to_frame())
dx dy dz S11 S22
-+S23 Ell E22 E33 E12 E13 E23
element_id node_id
1 1734 0.0 0.0 0.0 27.080811 6.927080
-0 0.000119 -0.000006 0.0 -0.000169 0.0 0.0
1582 0.0 0.0 0.0 28.319006 1.178649
—~0 0.000133 -0.000035 0.0 -0.000133 0.0 0.0
1596 0.0 0.0 0.0 47.701195 5.512213
0 0.000219 -0.000042 0.0 -0.000221 0.0 0.0
4923 0.0 0.0 0.0 27.699907 4.052865
—~0 0.000126 -0.000020 0.0 -0.000151 0.0 0.0
4924 0.0 0.0 0.0 38.010101 3.345431
—~0 0.000176 -0.000038 0.0 -0.000177 0.0 0.0
4770 3812 0.0 0.0 0.0 36.527439 2.470588
—~0 0.000170 -0.000040 0.0 -0.000182 0.0 0.0
12418 0.0 0.0 0.0 32.868889 3.320898
—~0 0.000152 -0.000031 0.0 -0.000177 0.0 0.0
14446 0.0 0.0 0.0 34.291058 3.642457
-0 0.000158 -0.000032 0.0 -0.000171 0.0 0.0
14614 0.0 0.0 0.0 36.063541 2.828889
—~0 0.000168 -0.000038 0.0 -0.000171 0.0 0.0
14534 0.0 0.0 0.0 33.804211 2.829817
—~0 0.000157 -0.000035 0.0 -0.000181 0.0 0.0

[37884 rows x 15 columns]

Todo: Write a more central document about pyLife’s column names.

make_mesh (geometry, state=None)

Makes the initial mesh

132

Chapter 6. pyLife Reference

pyLife Documentation, Release 2.0.0

Parameters
* geometry (string) — The geometry defined in the vmap file

e state (string, optional) — The load state of which the field variable is to be read. If
not given, the state must be defined in join_variable().

Return type self
Raises
* KeyError — if the geometry is not found of if the vmap file is corrupted
» KeyError — if the node_set or element_set is not found in the geometry.

e APIUseError —if both, a node_set and an element_set are given

Notes

This methods defines the initial mesh to which coordinate data can be joined by join_coordinates()
and field variables can be joined by join_variable()

Examples

Get the mesh data with the coordinates of geometry ‘1’ and the stress tensor of ‘STATE-2’

>>> (pylife.vmap.VMAPImport('demos/plate_with_hole.vmap')
.make_mesh('1l', 'STATE-2')
.join_coordinates()
.join_variable('STRESS_CAUCHY')
.to_frame()

X y z S11 S22 S33 o

-S12 S13 S23
element_id node_id
1 1734 14.897208 5.269875 0.0 27.080811 6.927080 0.0 -13.
-.687358 0.0 0.0

1582 14.555333 5.355806 0.0 28.319006 1.178649 0.0 -10.
732705 0.0 0.0

1596 14.630658 4.908741 0.0 47.701195 5.512213 0.0 -17.
-.866833 0.0 0.0

4923 14.726271 5.312840 0.0 27.699907 4.052865 0.0 -12.
210032 0.0 0.0

4924 14.592996 5.132274 0.0 38.010101 3.345431 0.0 -14.
299768 0.0 0.0
4770 3812 -13.189782 -5.691876 0.0 36.527439 2.470588 0.0 -14.

—~706686 0.0 0.0

12418 -13.560289 -5.278386 0.0 32.868889 3.320898 0.0 -14.
—260107 0.0 0.0

14446 -13.673285 -5.569107 0.0 34.291058 3.642457 0.0 -13.
-836027 0.0 0.0

14614 -13.389065 -5.709927 0.0 36.063541 2.828889 0.0 -13.
—~774759 0.0 0.0

14534 -13.276068 -5.419206 0.0 33.804211 2.829817 0.0 -14.
—580153 0.0 0.0

6.7. VMAP Interface 133

https://docs.python.org/3.8/library/exceptions.html#KeyError
https://docs.python.org/3.8/library/exceptions.html#KeyError

pyLife Documentation, Release 2.0.0

node_sets (geometry)
Returns a list of the node_sets present in the vmap file

nodes (geometry)
Retrieves the node positions

Parameters geometry (string)— The geometry defined in the vmap file

€y 6,0

Returns node_positions — a DataFrame with the node numbers as index and the columns ‘x’, ‘y
and ‘z’ for the node coordinates.

Return type DataFrame
Raises KeyError — if the geometry is not found of if the vmap file is corrupted

states()
Returns a list of state strings of states present in the vmap data

to_frame()
Returns the mesh and resets the mesh

Returns mesh — The mesh data joined so far
Return type DataFrame

Raises APIUseError — if there is no mesh present, i.e. make_mesh() has not been called yet or
the mesh has been reset in the meantime.

Notes
This method resets the mesh, i.e. make_mesh() must be called again in order to fetch more mesh data in
another mesh.

try_get_geometry_set (geometry_name, geometry_set_name)

try_get_vmap_object (group_full_path)

variables (geometry, state)
Ask for available variables for a certain geometry and state.

Parameters

* geometry (string) — Name of the geometry

e state (string) — Name of the state
Returns variables — List of available variable names for the geometry state combination
Return type list

Raises KeyError — if the geometry state combination is not available.

6.7.3 Writing a VMAP file

The VMAPEXxport Class
class pylife.vmap.VMAPExport (file_name)
The interface class to export a vmap file
Parameters file_name (string) — The path to the vmap file to be read

Raises Exception — If the file cannot be read an exception is raised. So far any exception from the
h5py module is passed through.

134 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/exceptions.html#KeyError
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/exceptions.html#KeyError
https://docs.python.org/3.8/library/exceptions.html#Exception

pyLife Documentation, Release 2.0.0

add_element_set (geometry_name, indices, mesh, name=None)
Exports element-type geometry set into given geometry

Parameters
e geometry_name (string)— The geometry to where we want to export the geometry set
* indices (Pandas Index) — List of node indices that we want to export
¢ mesh (Pandas DataFrame) — The Data Frame that holds the data of the mesh to export
e name (value of attribute MYSETNAME) —

Return type self

add_geometry (geometry_name, mesh)
Exports geometry with given name and mesh data

Parameters

e geometry_name (string)— Name of the geometry to add

¢ mesh (Pandas DataFrame)— The Data Frame that holds the data of the mesh to export
Return type self

add_integration_types (content)
Creates system dataset IntegrationTypes with the given content

Parameters content (the content of the dataset)—
Return type self

add_node_set (geometry_name, indices, mesh, name=None)
Exports node-type geometry set into given geometry

Parameters
* geometry_name (string’) — The geometry to where we want to export the geometry set
* indices (Pandas Index) — List of node indices that we want to export
* mesh (Pandas DataFrame) — The Data Frame that holds the data of the mesh to export
e name (value of attribute MYSETNAME) —

Return type self

add_variable (state_name, geometry_name, variable_name, mesh, column_names=None, location=None)
Exports variable into given state and geometry

Parameters
* state_name (string) — State where we want to export the parameter
e geometry_name (string)— Geometry where we want to export the parameter
¢ variable_name (string)— The name of the variable to export
¢ mesh (Pandas DataFrame) — The Data Frame that holds the data of the mesh to export
e column_names (List, optional)— The columns that the parameter consists of

e location (Enum, optional)— The location of the parameter * 2 - node * 3 - element -
not supported yet * 6 - element nodal

Return type self

6.7.

VMAP Interface 135

pyLife Documentation, Release 2.0.0

property file_name
Gets the name of the VMAP file that we are exporting

set_group_attribute (object_path, key, value)
Sets the ‘MYNAME’ attribute of the VM AP objects

Parameters
¢ object_path (string) — The full path to the object that we want to rename
¢ key (string) — The key of the attribute that we want to set
e value (np.dtype) — The value that we want to set to the attribute

Return type

variable_column_names (parameter_name)
Gets the column names that the given parameter consists of

Parameters parameter_name (string)— The name of the parameter
Return type The column names of the given parameter in the mesh

variable_location(parameter_name)
Gets the location of the given parameter

Parameters parameter_name (string) — The name of the parameter

Return type The location of the given parameter

6.8 Utils

6.8.1 The utils. functions module

Utility Functions

A collection of functions frequently used in lifetime estimation business.

pylife.utils. functions.rossow_cumfreqs(N)
Cumulative frequency estimator according to Rossow.

Parameters N (int)— The sample size of the statistical population
Returns cumfreqs — The estimated cumulated frequencies of the N samples

Return type numpy.ndarray

Notes

The returned value is the probability that the next taken sample is below the value of the i-th sample of n sorted
samples.

136 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

pyLife Documentation, Release 2.0.0

Examples

>>> rossow_cumfreqs(1)
array([0.5])

If we have one sample, the probability that the next sample will be below it is 0.5.

>>> rossow_cumfreqs(3)
array([0.2, 0.5, 0.8])

If we have three sorted samples, the probability that the next sample will be * below the first is 0.2 * below the
second is 0.5 * below the third is 0.8

References

‘Statistics of Metal Fatigue in Engineering’ page 16
https://books.google.de/books?isbn=3752857722

pylife.utils. functions.scattering_range_to_std(7)
Convert a scattering range (7S or TN in DIN 50100:2016-12) into standard deviation.

Parameters T (float)— inverted scattering range
Returns std — standard deviation corresponding to TS or TN assuming a normal distribution

Return type float

Notes

Actually 1/(2*norm.ppf(0.9))*np.log10(T)
Inverse of std_to_scattering_range()

pylife.utils.functions.std_to_scattering_range (std)
Convert a standard deviation into scattering range (7S or TN in DIN 50100:2016-12).

Parameters std (fIloat) — standard deviation
Returns T - inverted scattering range corresponding to std assuming a normal distribution

Return type float

Notes

Actually 10**2*norm.ppf(0.9) *std

Inverse of scattering_range_to_std()

6.8. Utils 137

https://books.google.de/books?isbn=3752857722
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float

pyLife Documentation, Release 2.0.0

6.8.2 The histogram module

pylife.utils.histogram.combine_histogram(hist_list, method='sum")
Combine a list of histograms to one.

Parameters

e hist_list (list) — list of histograms with all histograms as interval indexed pandas.
Series

» method (str or aggregating function)-method used for the aggregation, e.g. ‘sum’,
‘min’, ‘max’, ‘mean’, ‘std’ default is ‘sum’

Returns histogram — The resulting histogram
Return type pd.Series

pylife.utils.histogram.rebin_histogram(histogram, binning, nan_default=False)
Rebin a histogram to a given binning.

Parameters

* histogram (pandas.Series with pandas.IntervalIndex) — The histogram data to be
rebinned

* binning (pandas.IntervalIndex or int) — The given binning or number of bins

* nan_default (bool) — If True non occupied bins will be occupied with np.nan, else 0.0
Default False

Returns rebinned — The rebinned histogram
Return type pandas.Series with pandas.IntervalIndex

:raises TypeError : if the histogram or the binning do not have an IntervalIndex.: :raises ValueError : if
the binning is not monotonic increasing or has gaps.:

6.8.3 The utils.probability_data moduble

class pylife.utils.probability_data.ProbabilityFit (probs, occurrences)
property intercept

property occurrences
property percentiles

property slope

138 Chapter 6. pyLife Reference

https://docs.python.org/3.8/library/stdtypes.html#list
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://docs.python.org/3.8/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.IntervalIndex.html#pandas.IntervalIndex
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.IntervalIndex.html#pandas.IntervalIndex
https://docs.python.org/3.8/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.IntervalIndex.html#pandas.IntervalIndex

CHAPTER
SEVEN

WHAT IS NEW AND WHAT HAS CHANGED IN PYLIFE-2.0

The pyLife-2.0 release is planned for end of 2021. No promises, though. This document lists changes and new features
of pyLife-2.0.

7.1 General changes

In pyLife-1.x the individual modules often where not playing together really well, sometimes we had even the same
concept multiple times. For the pyLife-2.0 release we aim to improve that. The concept of the accessor classes will be
used more extensively.

7.2 New features

7.2.1 Rainflow counting

The rainflow counting module has been vastly redesigned in order to get more flexibility. New possibilities are:
* Four point rainflow counting
* Recording of the hysteresis loop information is in a separate class to allow the recording in a customized way.

See docs of the rainflow counting module for details.

7.3 Restructuring the code

We are now using PyScaffold to handle the packaging files. That’s why we have restructured the code base. Basically
the only notable things that have changed is that all the code has been moved from pylife to src/pylife and the
documentation has been moved from doc/source to docs. Both are the common locations for Python 3.x packages.

139

https://pandas.pydata.org/pandas-docs/stable/development/extending.html#registering-custom-accessors
https://pyscaffold.org

pyLife Documentation, Release 2.0.0

7.4 Changes that affect your code

 Strength scattering is now stored as TS and TN, no longer by 1/TS and 1/TN. This only concerns the naming, the
underlying values are still the same. With this we are following the newer conventions in DIN 50100:2016-12.

e self._validate() is no longer called with arguments. The arguments obj and validator are no longer
needed. obj is now accessible by self._obj. The methods of DataValidator are now accessible as methods
of PylifeSignal directly.

* Signal accessor class names are no longer suffixed with Accessor

* The PyLifeSignal is promoted to the toplevel of the pylife package. That means that you have to change

from pylife import signal

class Foo(signal.PylifeSignal):

to

from pylife import PylifeSignal

class Foo(PylifeSignal):

* The name of a rainflow matrix series is no longer frequency but cycles.

* The names of the functions scatteringRange2std and std2scatteringRange have been adjusted to the
naming conventions and are now scattering_range_to_std and std_to_scattering_range.

* The accessor class CyclicStress with the accessor cyclic_stress is gone. Use pylife.LoadCollective
instead.

7.5 Variable names

Currently we are brainstorming on guidelines about variable names. See the article in the docs about it. It will be
continuously updated.

140 Chapter 7. What is new and what has changed in pyLife-2.0

CHAPTER
EIGHT

CONTRIBUTING

Want to contribute? Great! You can do so through the standard GitHub pull request model. For large contributions we
do encourage you to file a ticket in the GitHub issues tracking system prior to any code development to coordinate with
the pyLife development team early in the process. Coordinating up front helps to avoid frustration later on.

8.1 Test driven development

The functionality of your contribution (functions, class methods) need to be tested by pytest testing routines.

In order to achieve maintainable code we ask contributors to use test driven development, i. e. follow the Three Rules
of Test Driven Development:

1. Do not change production code without writing a failing unit test first. Cleanups and refactorings are not changes
in that sense.

2. Write only enough test code as is sufficient to fail.
3. Only write or change minimal production code as is sufficient to make the failing test pass.

We are measuring the testing coverage. Your pull request should not decrease the test coverage.

8.2 Coding style

Please do consult the CODINGSTYLE file for codingstyle guide lines. In order to have your contribution merged to
main line following guide lines should be met.

8.2.1 Docstrings

Document your public API classes, methods, functions and attributes using numpy style docstings unless the naming
is really self-explanatory.

141

https://pytest.org
https://medium.com/@rrugamba/3-laws-of-tdd-58b5ec46a998
https://medium.com/@rrugamba/3-laws-of-tdd-58b5ec46a998

pyLife Documentation, Release 2.0.0

8.2.2 Comments

Use as little comments as possible. The code along with docstrings should be expressive enough. Remove any com-
mented code lines before issuing your pull request.

8.3 Making commits

8.3.1 Configure your git client

Please configure your identity in your git client appropriately. From the git command line you can do that using

git config user.name <Your Name>
git config user.email <your-email@...>

8.3.2 Writing good commit messages

Please consider following the commit guidelines when writing your commit message. We will not enforce this, but we
would appreciate if you do. Here is a good read why this makes sense.

8.4 Branching and pull requests

Pull requests must be filed against the develop branch, except for urgent bugfixes requiring a special bugfix release.
Those can be filed against master.

Branches should have meaningful names and whenever it makes sense use one of the following prefixes.
* bugfix/ for bugfixes, that do not change the API
» feature/ if a new feature is added
* doc/ if documentation is added or improved
e cleanupy/ if code is cleaned or refactored without changing the behavior

If your branch does not fit any of those, you can also come up with another appropriate prefix.

8.5 License

Your contribution must be licensed under the Apache-2.0 license, the license used by this project.

142 Chapter 8. Contributing

https://www.git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#_commit_guidelines
https://chris.beams.io/posts/git-commit/

pyLife Documentation, Release 2.0.0

8.6 Add / retain copyright notices

Include a copyright notice and license in each new file to be contributed, consistent with the style used by this project.
If your contribution contains code under the copyright of a third party, document its origin, license, and copyright
holders.

8.7 Sign your work

This project tracks patch provenance and licensing using the Developer Certificate of Origin 1.1 (DCO) from develop-
ercertificate.org and Signed-off-by tags initially developed by the Linux kernel project.

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
1 Letterman Drive

Suite D4700

San Francisco, CA, 94129

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1
By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

With the sign-off in a commit message you certify that you authored the patch or otherwise have the right to submit it
under an open source license. The procedure is simple: To certify above Developer’s Certificate of Origin 1.1 for your
contribution just append a line

8.6. Add / retain copyright notices 143

https://developercertificate.org/
https://developercertificate.org/

pyLife Documentation, Release 2.0.0

Signed-off-by: Random] Developer <random@developer.example.org>

to every commit message using your real name or your pseudonym and a valid email address.

If you have set your user.name and user.email git configs you can automatically sign the commit by running the
git-commit command with the -s option. There may be multiple sign-offs if more than one developer was involved in
authoring the contribution.

Another option to automatically add the Signed-off-by: is to once use the command

git config core.hooksPath .githooks

in your pyLife working directory. This will then add the Signed-off-by: line automatically.

For a more detailed description of this procedure, please see SubmittingPatches which was extracted from the Linux
kernel project, and which is stored in an external repository.

8.7.1 Individual vs. Corporate Contributors

Often employers or academic institution have ownership over code that is written in certain circumstances, so please
do due diligence to ensure that you have the right to submit the code.

If you are a developer who is authorized to contribute to pyLife on behalf of your employer, then please use your
corporate email address in the Signed-off-by tag. Otherwise please use a personal email address.

8.8 Maintain Copyright holder / Contributor list

Each contributor is responsible for identifying themselves in the NOTICE file, the project’s list of copyright holders and
authors. Please add the respective information corresponding to the Signed-off-by tag as part of your first pull request.

If you are a developer who is authorized to contribute to pyLife on behalf of your employer, then add your company
/ organization to the list of copyright holders in the NOTICE file. As author of a corporate contribution you can also
add your name and corporate email address as in the Signed-off-by tag.

If your contribution is covered by this project’s DCO’s clause “(c) The contribution was provided directly to me by
some other person who certified (a) or (b) and I have not modified it”, please add the appropriate copyright holder(s)
to the NOTICE file as part of your contribution.

144 Chapter 8. Contributing

https://github.com/wking/signed-off-by/blob/7d71be37194df05c349157a2161c7534feaf86a4/Documentation/SubmittingPatches

CHAPTER
NINE

PYLIFE CODING STYLE GUIDELINES

9.1 Introduction

One crucial quality criteria of program code is maintainability. In order to maintain code, the code has to be written
clearly so that it is easily readable to someone who has not written it. Therefore it is helpful to have a consistent coding
style with consistent naming conventions. However, the coding style rules are not supposed to be strict rules. They can
be disobeyed if there are good reasons to do so.

As we are programming in Python we vastly stick to the [PEPS coding style guide][1]. That document is generally
recommendable to python programmers. This document therefore covers only things that go beyond the PEPS. So
please read PEPS for the general recommendations on python programming.

9.1.1 Clean code

The notion of code quality that keeps software maintainable, makes it easier to find and fix bugs and so on is nowadays
referred to by the expression Clean Code.

The iconic figure behind that notion is Robert C. Martin aka Uncle Bob. For the full story about clean code you can
read his books Clean Code and Clean Coders. Some of his lectures about Clean Code are available on Youtube.

9.2 Use a linter and let your editor help you

A linter is a tool that scans your code and shows you where you are not following the coding style guidelines. The
anaconda environment of environment.yml comes with flake8 and pep8-naming, which warns about a lot of things.
Best is to configure your editor in a way that it shows you the linter warnings as you type.

Many editors have some other useful helpers. For example whitespace cleanup, i.e. delete any trailing whitespace as
soon as you save the file.

9.3 Line lengths

Lines should not often exceed the 90 characters. Exceeding it sometimes by a bit is ok, though. Please do never exceed
125 characters because that’s the width of the GitHub code viewer.

145

https://en.wikipedia.org/wiki/Robert_C._Martin

pyLife Documentation, Release 2.0.0

9.4 Naming conventions

By naming conventions the programmer can give some indications to the reader of the program, what an identifier is
supposed to be or what it is referring to. Therefore some consistency guidelines.

9.4.1 Mandatory names throughout the pyLife code base

For variables representing physical quantities, we have a dedicated document in the documentation. Please follow the
points discussed there.

9.4.2 Module names
For module names, try to find one word names like rainflow, gradient. If you by all means need word separation

in a module name, use snake_case. Never use dashes (-) and capital letters in module names. They lead to all kinds
of problems.

9.4.3 Class names

Class names are usually short and a single or compound noun. For these short names we use the so called CamelCase
style:

class DataObjectReader:

9.4.4 Function names

Function and variable names can be longer than class names. Especially function names tend to be actual sentences
like:

def calc_all_data_from_scratch():

These are way more readable in the so called lowercase_with_underscores style.

9.4.5 Variable names

Variable names can be shorter as long as they are local. For example when you store the result of a function in a variable
that the function is finally to return, don’t call it result_to_be_returned but only res. A rule of thumb is that the
name of a variable needs to be descriptive, if the code part in which the variable is used, exceeds the area that you can
capture with one eye glimpse.

146 Chapter 9. pyLife coding style guidelines

pyLife Documentation, Release 2.0.0

9.4.6 Class method names

There are a couple of conventions that make it easier to understand an API of a class.

To access the data items of a class we used to use getter and setter functions. A better and more modern way is python’s
@property decorator.

class ExampleClass:
def __init__(self):
self._foo = 23
self._bar = 42
self._sum = None

@property
def foo(self):

"

getter functions have the name of the accessed data item

"

return self._foo

@foo.setter
def foo(self, v):
" setter functions have the name of the accessed data item prefixed
with “set_’
if v < 0: # sanity check
raise Exception('"Value for foo must be >= 0")
self._foo = v

def calc_sum_of_foo_and_bar(self):
" class methods whose name does not imply that they return data
should not return anything.

"

self._sum = self._foo + self._bar

The old style getter and setter function like set_foo(self, new_foo)are still tolerable but should be avoided in new
code. Before major releases we might dig to the code and replace them with @property where feasible.

9.5 Structuring of the code

9.5.1 Data encapsulation

One big advantage for object oriented programming is the so called data encapsulation. That means that items of a
class that is intended only for internal use can be made inaccessible from outside of the class. Python does not strictly
enforce that concept, but in order to make it clear to the reader of the code, we mark every class method and every class
member variable that is not meant to be accessed from outside the class with a leading underscore _ like:

class Foo:

def __init__(self):
self.public_variable = 'bar'
self._private_variable = 'baz'

(continues on next page)

9.5. Structuring of the code 147

pyLife Documentation, Release 2.0.0

(continued from previous page)

def public_method(self):

def _private_method(self):

9.5.2 Object orientation

Usually it makes sense to compound data structures and the functions using these data structures into classes. The data
structures then become class members and the functions become class methods. This object oriented way of doing
things is recommendable but not always necessary. Sets of simple utility routines can also be autonomous functions.

As a rule of thumb: If the user of some functionality needs to keep around a data structure for a longer time and make
several different function calls that deal with the same data structure, it is probably a good idea to put everything into
a class.

Do not just put functions into a class because they belong semantically together. That is what python modules are there
for.

9.5.3 Functions and methods

Functions are not only there for sharing code but also to divide code into easily manageable pieces. Therefore functions
should be short and sweet and do just one thing. If a function does not fit into your editor window, you should consider
to split it into smaller pieces. Even more so, if you need to scroll in order to find out, where a loop or an if statement
begins and ends. Ideally a function should be as short, that it is no longer possible to extract a piece of it.

9.5.4 Commenting

Programmers are taught in the basic programming lessons that comments are important. However, a more modern
point of view is, that comments are only the last resort, if the code is so obscure that the reader needs the comment
to understand it. Generally it would be better to write the code in a way that it speaks for itself. That’s why keeping
functions short is so important. Extracting a code block of a function into another function makes the code more
readable, because the new function has a name.

Bad example:

def some_function(data, parameters):
. # a bunch of code
. # over several lines
. # hard to figure out
. # what it is doing
if parameters['use_method_1']:
. # a bunch of code
. # over several lines
. # hard to figure out
. # what it is doing
else:
a bunch of code
over several lines
hard to figure out
what it is doing

HH R R R

(continues on next page)

148 Chapter 9. pyLife coding style guidelines

pyLife Documentation, Release 2.0.0

(continued from previous page)

. # a bunch of code

. # over several lines
. # hard to figure out
. # what it is doing

Good example

def prepare(data, parameters):
. # a bunch of code
. # over several lines
. # easily understandable
. # by the function's name

def cleanup(data, parameters):
. # a bunch of code
. # over several lines
. # easily understandable
. # by the function's name

def method_1(data):
. # a bunch of code
. # over several lines
. # easily understandable
. # by the function's name

def other_method(data):
. # a bunch of code
. # over several lines
. # easily understandable
. # by the function's name

def some_function(data, parameters):
prepare(data, parameters)
if parameters['use_method_1']:
method_1(data)
else:
other_method(data)
cleanup(data, parameters)

Ideally the only comments that you need are docstrings that document the public interface of your functions and classes.

Compare the following functions:

Bad example:

def hypot(triangle):

reading in a
a = triangle.get_a(Q)

reading in b
b = triangle.get_b()

(continues on next page)

9.5. Structuring of the code

149

pyLife Documentation, Release 2.0.0

(continued from previous page)

reading in gamma
gamma = triangle.get_gamma()

calculate c
c = np.sqrt(a*a + b*b - 2*a*b*np.cos(gamma))

return result
return c

Everyone sees that you read in some parameter a. Everyone sees that you read in some parameter b and gamma.
Everyone sees that you calculate and return some value c. But what is it that you are doing?

Now the good example:

def hypot(triangle):
" Calculates the hypotenuse of a triangle using the law of cosines

https://en.wikipedia.org/wiki/Law_of_cosines
a = triangle.a

b = triangle.b

gamma = triangle.gamma

return np.sqrt(a®a + b*b - 2*a*b*np.cos(gamma))

150 Chapter 9. pyLife coding style guidelines

CHAPTER
TEN

PYLIFE’S VARIABLE NAME CONVENTIONS

10.1 Preamble

In order for source code to be readable and maintainable, variable names should be expressive, i.e. they should imply
what the variable represents. By doing that, documenting variable names becomes virtually unnecessary.

However, in scientific programming we often need to deal with fairly complex mathematical equations. Then it is
tempting to use the same or at least similar symbols as we find in the equation in the text book. While these symbols
are obvious to people with domain knowledge, for programmers focusing on software optimization and industrialization
these symbols are often hard to read.

Out of these considerations we decided that in pyLife for physical quantities the variable names as described in this
document are mandatory. For physical quantities not described in this document, you can either use an expressive
variable name or you can document a symbol in your module documentation.

10.2 General rules

10.2.1 Letters

Roman letters can be used as is, capital or small. Greek letters could actually also be written as unicode letters. Yes, x
= x_0 * np.exp(-*t) * np.cos(*t +) is perfectly valid Python code. However, not all of us are using decent
systems which allow you to type them easily. That’s why for Greek letters we would spell them out like alpha. This

does not work for 1ambda, though as it is a keyword in python.

10.2.2 Indices

Indices should be separated with an underscore (_) from the symbol. However, in some cases the underscore is not
uses (see below.)

151

pyLife Documentation, Release 2.0.0

10.3 Variable names

10.3.1 Stress values

¢ Stress tensor variables: S11, S22, S33, S12, S13, S23

¢ Cyclic stress variables: * amplitude: stress or load amplitude, * meanstress: meanstress, * R: R-value

10.3.2 Coordinate values

¢ Cartesian coordinates: X, y, Z

10.3.3 Displacement values

* Displacements in a Cartesian coordinate system: dx, dy, dz

10.3.4 Strength variables

* SD endurance limit in load direction, SD_xx for xx percent failure probability
* ND endurance limit in cycle direction, ND_xx for xx percent failure probability
¢ TS scatter in load direction (= SD_10/SD_90)

¢ TN scatter in load direction (= ND_10/ND_90)

* k slope of the Wdhler curve, k_1 above the endurance limit, k_2 below the endurance limit

152 Chapter 10. pyLife’s variable name conventions

CHAPTER
ELEVEN

AUTHORS

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

This is the official list of pyLife copyright holders and authors.

Often employers or academic institutions have ownership over code that is
written in certain circumstances, so please do due diligence to ensure that
you have the right to submit the code.

When adding J Random Contributor's name to this file, either J's name on its
own or J's name associated with J's organization's name should be added,
depending on whether J's employer (or academic institution) has ownership
over code that is written for this project.

How to add names to this file:
Individual's name <submission email address>.

If Individual's organization is copyright holder of her contributions add the
organization's name, optionally also the contributor's name:

Organization's name
Individual's name <submission corporate email address>

Please keep the list sorted.

Robert Bosch GmbH

Vivien Le Baube <vivien.lebaube@de.bosch.com>

Lisa Katharina Hill <LisaKatharina.Hill@de.bosch.com>

Mustapha Kassem <fixed-term.Mustapha.Kassem@de.bosch.com>
Gyongyvér Kiss <gyongyver.kiss@hu.bosch.com>

Daniel Christopher Kreuter <DanielChristopher.Kreuter@de.bosch.com>
Johannes Mueller <johannes.mueller4@de.bosch.com>

Erik Natkowski <erik.natkowski@de.bosch.com>

Vishnu Pradeep <fixed-term.Vishnu.Pradeep@de.bosch.com>

Lena Rapp <fixed-term.Lena.Rapp@de.bosch.com>

Jakob Riebe <fixed-term.Jakob.Riebe@de.bosch.com>

Simone Schreijdg <simone.schreijaeg@de.bosch.com>

Cedric Philip Wagner <fixed-term.CedricPhilip.Wagner@de.bosch.com>
Matthias Wieler <matthias.wieler@de.bosch.com>

Andreas Wilmes <andreas.wilmes@de.bosch.com>

TU Darmstadt IFSW

Alexander Maier <maier@wm.tu-darmstadt.de>

153

pyLife Documentation, Release 2.0.0

154 Chapter 11. Authors

CHAPTER
TWELVE

LICENSE

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1.

Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object

(continues on next page)

155

pyLife Documentation, Release 2.0.0

(continued from previous page)

form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(continues on next page)

156

Chapter 12. License

pyLife Documentation, Release 2.0.0

(continued from previous page)

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each

(continues on next page)

157

pyLife Documentation, Release 2.0.0

(continued from previous page)

Contributor provides its Contributions) on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2019-2021 Robert Bosch GmbH
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

(continues on next page)

158 Chapter 12. License

pyLife Documentation, Release 2.0.0

(continued from previous page)

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

159

pyLife Documentation, Release 2.0.0

160 Chapter 12. License

CHAPTER
THIRTEEN

3RD PARTY LICENSES

Third Party Licenses

pyLife includes material from the projects listed below (Third Party
IP). The original copyright notice and the license under which we received
such Third Party IP, are set forth below.

docs/Makefile docs/conf.py docs/_static/.gitignore setup.py setup.cfg
pyproject.toml .coveragerc .gitignore readthedocs.yml src/pylife/__init__.py

Name: PyScaffold

Version: 4.0.1

URL: http:/pyscaffold.org

License: MIT

Copyright: 2014 Blue Yonder GmbH

Comment : The component itself is not part of pyLife,

only the above mentioned files were initially generated by
PyScaffold as templates and the adjusted versions shipped with
pyLife.

The MIT License (MIT)
Copyright (c) 2014 Blue Yonder GmbH

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

(continues on next page)

161

pyLife Documentation, Release 2.0.0

(continued from previous page)

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

162 Chapter 13. 3rd Party Licenses

CHAPTER
FOURTEEN

INDICES AND TABLES

* genindex
* modindex

¢ search

163

pyLife Documentation, Release 2.0.0

164 Chapter 14. Indices and tables

pylife
pylife
pylife
pylife
pylife
pylife

pylife.
pylife.
pylife.
pylife.
pylife.
pylife.
pylife.
pylife.
pylife.
pylife.
pylife.
.utils. functions, 136

.utils.histogram, 138

.utils.probability_data, 138

pylife
pylife
pylife

.materialdata.woehler, 113
.materialdata.woehler.likelihood, 116
.materialdata.woehler.pearl_chain, 116
.materiallaws.hookeslaw, 101
.materiallaws.true_stress_strain, 113
.mesh.meshsignal, 117

strength.FailureProbability, 99
strength.meanstress, 97
strength.miner, 99
stress.equistress, 79
stress. frequencysignal, 95
stress.LoadCollective, 92
stress.LoadHistogram, 92
stress.rainflow, 83
stress.rainflow.compat, 92
stress.stresssignal, 93
stress.timesignal, 93

PYTHON MODULE INDEX

165

pyLife Documentation, Release 2.0.0

166 Python Module Index

Symbols

__init__QO (pylife.stress.rainflow.AbstractRecorder
method), 90

__init__QO (pylife.stress.rainflow.FKMDetector
method), 89

__init__Q (pylife.stress.rainflow.FourPointDetector
method), 87

__init__Q
method), 90

__init__Q (pylife.stress.rainflow.LoopValueRecorder
method), 89

__init__Q (pylife.stress.rainflow.ThreePointDetector
method), 86

(pylife.stress.rainflow. FullRecorder

A

abs_max_principal () (in
pylife.stress.equistress), 80

abs_max_principal ()
(pylife.stress.equistress.StressTensorEquistress
method), 80

AbstractRecorder (class in pylife.stress.rainflow), 90

add_element_set() (pylife.vmap. VMAPEXxport
method), 135

add_geometry() (pylife.vmap.VMAPExport method),

module

135

add_integration_types() (pylife.vmap.VMAPExport
method), 135

add_node_set() (pylifevmap.VMAPExport method),
135

add_variable() (pylife.vmap.VMAPExport method),
135

analyze() (pylife.materialdata.woehler. Elementary

method), 115

B

basquin_cycles() (pylife.materiallaws.WoehlerCurve
method), 108

basquin_load() (pylife.materiallaws. WoehlerCurve
method), 108

Bayesian (class in pylife.materialdata.woehler), 116

bayesian_information_criterion()
(pylife.materialdata.woehler. Elementary

INDEX

method), 115
broadcast () (pylife.Broadcaster method), 76
broadcast() (pylife.materiallaws. WoehlerCurve
method), 108
broadcast () (pylife.mesh.Mesh method), 123
broadcast() (pylife.mesh.PlainMesh method), 119
Broadcaster (class in pylife), 75
butter_bandpass() (in
pylife.stress.timesignal), 94

module

C

calcQ (pylife.mesh.HotSpot method), 127

chunk_local_index()
(pylife.stress.rainflow.AbstractRecorder
method), 90

chunks (pylife.stress.rainflow.AbstractRecorder prop-
erty), 91

clean_timeseries() (in
pylife.stress.timesignal), 94

collective (pylife.stress.rainflow.FullRecorder prop-
erty), 90

collective (pylife.stress.rainflow.LoopValueRecorder
property), 89

combine_histogram() (in
pylife.utils.histogram), 138

connectivity (pylife.mesh.Mesh property), 125

conservative_fatigue_limit()
(pylife.materialdata.woehler. FatigueData
method), 114

coordinates (pylife.mesh.Mesh property), 125

coordinates (pylife.mesh.PlainMesh property), 120

cycles (pylife. materialdata.woehler.FatigueData prop-
erty), 114

cycles() (pylife.materiallaws.WoehlerCurve method),
110

module

module

D

damage Q) (pylife.strength.Fatigue method), 96

DataValidator (class in pylife), 78

delta_strain() (pylife.materiallaws.RambergOsgood
method), 105

167

pyLife Documentation, Release 2.0.0

delta_stress() (pylife.materiallaws.RambergOsgood
method), 106

dimensions (pylife. mesh.Mesh property), 125

dimensions (pylife.mesh.PlainMesh property), 120

E

E (pylife.materiallaws.hookeslaw.HookesLawld prop-
erty), 101

E (pylife.materiallaws.hookeslaw.HookesLaw2dPlaneStrain

property), 102

E (pylife. materiallaws.hookeslaw.HookesLaw2dPlaneStress

property), 103

E (pylife.materiallaws.hookeslaw.HookesLaw3d prop-
erty), 104

E (pylife.materiallaws.RambergOsgood property), 105

effective_damage_sum() (in module
pylife.strength.miner), 101

effective_damage_sum()
(pylife.strength.miner.MinerBase method),

100
eigenval O (in module pylife.stress.equistress), 80
elastic_strain() (pylife.materiallaws.RambergOsgood

method), 106
element_sets() (pylifevmap.VMAPImport method),
130

Elementary (class in pylife.materialdata.woehler), 115

experimental_mean_stress_sensitivity() (in
module pylife.strength.meanstress), 98

F

fail_if key missing() (pylife. DataValidator
method), 78

fail_if key missing()
(pylife.materiallaws.WoehlerCurve — method),
110

fail_if key missing() (pylife.mesh.Mesh method),
125

fail_if key missing() (pylife.mesh.PlainMesh

method), 121

fail_if key missing() (pylife.PylifeSignal method),
73

failure_probability
(pylife.materiallaws.WoehlerCurve property),
110

Fatigue (class in pylife.strength), 96

fatigue_limit (pylife.materialdata.woehler.FatigueData
property), 114

FatigueData (class in pylife.materialdata.woehler), 114

file_name (pylife.vmap.VMAPExport property), 135

filter_element_set() (pylife.vmap.VMAPImport
method), 130

filter_node_set()
method), 130

find_turns Q) (in module pylife.stress.rainflow), 92

(pylife.vmap. VMAPImport

finite_life_factor()
(pylife.strength.miner.MinerBase
100
finite_zone (pylife.materialdata.woehler.FatigueData
property), 114
fitter() (pylife.materialdata.woehler.Probit method),
116
five_segment () (pylife.strength.meanstress.HaighDiagram
class method), 97
five_segment) (pylife.strength.meanstress.MeanstressTransformCollecti
method), 98
five_segment_correction() (in
pylife.strength.meanstress), 98
fkm_goodman() (in module pylife.strength.meanstress),
99
fkm_goodman) (pylife.strength.meanstress.HaighDiagram
class method), 97
fkm_goodman () (pylife.strength.meanstress.MeanstressTransformCollectiv
method), 98
fkm_goodman () (pylife.strength.meanstress.MeanstressTransformMatrix
method), 98
FKMDetector (class in pylife.stress.rainflow), 88
FourPointDetector (class in pylife.stress.rainflow), 86
fractured_loads (pylife. materialdata.woehler. FatigueData
property), 114
fractures (pylife.materialdata.woehler. FatigueData
property), 114
from_dict () (pylife.strength.meanstress.HaighDiagram
class method), 97
from_parameters() (pylife.materiallaws.WoehlerCurve
class method), 110
from_parameters() (pylife.mesh.Mesh class method),
125
from_parameters()
method), 121
from_parameters() (pylife. PylifeSignal class method),
74
fs_calcQ) (in module pylife.stress.timesignal), 95
FullRecorder (class in pylife.stress.rainflow), 90

G

G (pylife.materiallaws.hookeslaw.HookesLaw?2dPlaneStrain
property), 102

G (pylife.materiallaws.hookeslaw.HookesLaw2dPlaneStress
property), 103

G (pylife. materiallaws.hookeslaw.HookesLaw3d prop-
erty), 104

gassner() (pylife.strength.miner.MinerElementary
method), 100

gassner_cycles()
method), 100

geometries () (pylife.vmap.VMAPImport method), 130

get_missing_keys() (pylife. DataValidator method),
78

method),

module

(pylife.mesh.PlainMesh class

(pylife.strength.miner.MinerBase

168

Index

pyLife Documentation, Release 2.0.0

get_missing_keys() (pylife.materiallaws.WoehlerCurve
method), 111

get_missing_keys() (pylife.mesh.Mesh method), 125

get_missing_keys() (pylife.mesh.PlainMesh method),
121

get_missing_keys() (pylife. PylifeSignal method), 74

Gradient (class in pylife.mesh), 128

gradient_of () (pylife.mesh.Gradient method), 128

H

HaighDiagram (class in pylife.strength.meanstress), 97
histogram() (pylife.stress.rainflow.LoopValueRecorder

keys Q) (pylife.mesh.Mesh method), 126
keys Q) (pylife.mesh.PlainMesh method), 122
keys) (pylife. PylifeSignal method), 74

lifetime_multiple()
(pylife.strength.miner.MinerBase
100

lifetime_multiple()
(pylife.strength.miner.MinerElementary
method), 100

lifetime_multiple()

method),

method), 89 (pylife.strength.miner.MinerHaibach method),
histogram_numpy) (pylife.stress.rainflow.LoopValueRecorder 101

method), 89 Likelihood (class in pylife. materialdata.woehler.likelihood),
HookesLawld (class in pylife.materiallaws.hookeslaw), 116

101 likelihood_finite()

HookesLaw2dPlaneStrain (class
pylife.materiallaws.hookeslaw), 102

HookesLaw2dPlaneStress (class
pylife.materiallaws.hookeslaw), 103

HookesLaw3d (class in pylife. materiallaws.hookeslaw),
104

HotSpot (class in pylife.mesh), 127

index_from (pylife.stress.rainflow.FullRecorder prop-
erty), 90

index_to (pylife.stress.rainflow.FullRecorder property),
90

infinite_zone (pylife.materialdata.woehler. FatigueData
property), 114

intercept (pylife.utils.probability_data.ProbabilityFit

property), 138

in

J

join_coordinates() (pylife.vmap.VMAPImport

method), 130
join_variable() (pylife.vmap.VMAPImport method),
131

K

K (pylife.materiallaws.hookeslaw.HookesLaw2dPlaneStrain

property), 102

K (pylife.materiallaws.hookeslaw.HookesLaw2dPlaneStress

property), 103
K (pylife.materiallaws.hookeslaw.HookesLaw3d prop-
erty), 104
K (pylife.materiallaws.RambergOsgood property), 105
k_1 (pylife.materiallaws.WoehlerCurve property), 111
k_2 (pylife.materiallaws. WoehlerCurve property), 111
keys Q) (pylife.DataValidator method), 79
keys () (pylife.materiallaws. WoehlerCurve method), 111

(pylife.materialdata.woehler.likelihood. Likelihood
method), 116

likelihood_infinite()
(pylife.materialdata.woehler.likelihood. Likelihood
method), 116

likelihood_total) (pylife.materialdata.woehler.likelihood.Likelihood

method), 117
load (pylife. materialdata.woehler.FatigueData prop-
erty), 114
load () (pylife.materiallaws.WoehlerCurve method), 112
LoopValueRecorder (class in pylife.stress.rainflow), 89
lower_hysteresis() (pylife.materiallaws.RambergOsgood
method), 106

M

make_mesh () (pylife.vmap.VMAPImport method), 132

max_principal () (in module pylife.stress.equistress),
81

max_principal) (pylife.stress.equistress.StressTensorEquistress
method), 80

max_runout_load (pylife. materialdata.woehler. FatigueData
property), 115

MaxLikeFull (class in pylife. materialdata.woehler), 116

MaxLikeInf (class in pylife.materialdata.woehler), 116

MeanstressTransformCollective (class in
pylife.strength.meanstress), 98
MeanstressTransformMatrix (class in

pylife.strength.meanstress), 98

Mesh (class in pylife.mesh), 122

Meshmapper (class in pylife.mesh), 128

min_principal () (in module pylife.stress.equistress),
81

min_principal) (pylife.stress.equistress.StressTensorEquistress
method), 80

miner_elementary () (pylife.materiallaws.WoehlerCurve
method), 112

Index

169

pyLife Documentation, Release 2.0.0

miner_haibach() (pylife.materiallaws.WoehlerCurve
method), 112
MinerBase (class in pylife.strength.miner), 100
MinerElementary (class in pylife.strength.miner), 100
MinerHaibach (class in pylife.strength.miner), 101
mises() (in module pylife.stress.equistress), 81
mises() (pylife.stress.equistress.StressTensorEquistress
method), 80
mixed_loads (pylife.materialdata.woehler.FatigueData
property), 115
module
pylife.materialdata.woehler, 113
pylife.materialdata.woehler.likelihood,
116
pylife.materialdata.woehler.pearl_chain,
116
pylife.materiallaws.hookeslaw, 101
pylife.materiallaws.true_stress_strain,
113
pylife.mesh.meshsignal, 117
pylife.strength.FailureProbability, 99
pylife.strength.meanstress, 97
pylife.strength.miner, 99
pylife.stress.equistress, 79
pylife.stress. frequencysignal, 95
pylife.stress.LoadCollective, 92
pylife.stress.LoadHistogram, 92
pylife.stress.rainflow, 83
pylife.stress.rainflow.compat, 92
pylife.stress.stresssignal, 93
pylife.stress.timesignal, 93
pylife.utils. functions, 136
pylife.utils.histogram, 138
pylife.utils.probability_data, 138

N

n (pylife.materiallaws.RambergOsgood property), 106
ND (pylife.materiallaws. WoehlerCurve property), 107
node_sets () (pylife.vmap.VMAPImport method), 133
nodes () (pylife.vmap.VMAPImport method), 134
non_fractured_loads

(pylife.materialdata.woehler. FatigueData

property), 115

num_fractures (pylife. materialdata.woehler. FatigueData
property), 115

num_runouts (pylife. materialdata.woehler.FatigueData
property), 115

num_tests (pylife. materialdata.woehler.FatigueData
property), 115

O

occurrences (pylife.utils.probability_data.ProbabilityFit
property), 138

P

pearl_chain_estimator()
(pylife.materialdata.woehler. Elementary
method), 115

PearlChainProbability (class in
pylife.materialdata.woehler.pearl_chain),
116

percentiles (pylife.utils.probability_data.ProbabilityFit
property), 138

PlainMesh (class in pylife.mesh), 118

plastic_strain() (pylife.materiallaws.RambergOsgood
method), 106

principals() (in module pylife.stress.equistress), 81

principals () (pylife.stress.equistress.StressTensorEquistress

method), 80

ProbabilityFit (class in pylife.utils.probability_data),
138

Probit (class in pylife.materialdata.woehler), 116

process() (pylife.mesh.Meshmapper method), 128

process () (pylife.stress.rainflow. FKMDetector method),
89

process() (pylife.stress.rainflow. FourPointDetector
method), 87

process() (pylife.stress.rainflow. Three PointDetector
method), 86

psd_df () (in module pylife.stress.timesignal), 95

psd_smoother () (pylife.stress.frequencysignal.psdSignal
method), 95

psdSignal (class in pylife.stress.frequencysignal), 95

pylife.materialdata.woehler

module, 113
pylife.materialdata.woehler.likelihood

normed_cycles (pylife.materialdata.woehler.pearl_chain. Pearl gyt eobability

property), 116

pylife.materialdata.woehler.pearl_chain

normed_load (pylife.materialdata.woehler.pearl_chain. PearlChgig&nakahilgy

property), 116

nu (pylife.materiallaws.hookeslaw.HookesLaw2dPlaneStrain

property), 102

nu (pylife.materiallaws.hookeslaw.HookesLaw2dPlaneStress

property), 103

nu (pylife.materiallaws.hookeslaw.HookesLaw3d prop-

erty), 104

pylife.materiallaws.hookeslaw
module, 101
pylife.materiallaws.true_stress_strain
module, 113
pylife.mesh.meshsignal
module, 117
pylife.strength.FailureProbability
module, 99

170

Index

pyLife Documentation, Release 2.0.0

pylife.strength.meanstress
module, 97
pylife.strength.miner
module, 99
pylife.stress.equistress
module, 79
pylife.stress.frequencysignal
module, 95
pylife.stress.LoadCollective
module, 92
pylife.stress.LoadHistogram
module, 92
pylife.stress.rainflow
module, 83
pylife.stress.rainflow.compat
module, 92
pylife.stress.stresssignal
module, 93
pylife.stress.timesignal
module, 93
pylife.utils. functions
module, 136
pylife.utils.histogram
module, 138
pylife.utils.probability_data
module, 138
PylifeSignal (class in pylife), 73

Q

query() (pylife.stress.timesignal. TimeSignalGenerator
method), 93

R

Ramberg0sgood (class in pylife.materiallaws), 105

rebin_histogram() (in module pylife.utils.histogram),
138

record_index () (pylife.stress.rainflow.AbstractRecorder
method), 91

record_index()
method), 90

(pylife.stress.rainflow. FullRecorder

record_values() (pylife.stress.rainflow.AbstractRecorder

method), 91

record_values() (pylife.stress.rainflow.LoopValueRecorder

method), 90

report_chunk () (pylife.stress.rainflow.AbstractRecorder
method), 91

resample_acc() (in module pylife.stress.timesignal), 95

reset() (pylife.stress.timesignal. TimeSignalGenerator
method), 94

rms_psd() (pylife.stress.frequencysignal.psdSignal
method), 96

rossow_cumfreqs () (in module pylife.utils.functions),
136

runout_loads (pylife.materialdata.woehler. FatigueData
property), 115

runouts (pylife.materialdata.woehler. FatigueData prop-
erty), 115

S

scattering_range_to_std()
pylife.utils.functions), 137
SD (pylife.materiallaws. WoehlerCurve property), 107
security_cycles() (pylife.strength.Fatigue method),
96
security_load() (pylife.strength.Fatigue method), 96
set_group_attribute() (pylife.vmap.VMAPExport
method), 136
signed_mises_abs_max_principal ()
pylife.stress.equistress), 82
signed_mises_abs_max_principal()
(pylife.stress.equistress.StressTensorEquistress
method), 80
signed_mises_trace()
pylife.stress.equistress), 82
signed_mises_trace()
(pylife.stress.equistress.StressTensorEquistress
method), 80
signed_tresca_abs_max_principal () (in module
pylife.stress.equistress), 82
signed_tresca_abs_max_principal()
(pylife.stress.equistress.StressTensorEquistress
method), 80
signed_tresca_trace()
pylife.stress.equistress), 83
signed_tresca_trace()
(pylife.stress.equistress.StressTensorEquistress
method), 80
slope (pylife.utils.probability_data.ProbabilityFit prop-
erty), 138
states Q) (pylife.vmap.VMAPImport method), 134
std_to_scattering_range() (in module
pylife.utils.functions), 137
strain() (pylife.materiallaws.hookeslaw.HookesLawld
method), 101
strain() (pylife.materiallaws.hookeslaw.HookesLaw2dPlaneStrain
method), 102
strain() (pylife.materiallaws.hookeslaw.HookesLaw2dPlaneStress
method), 103
strain(Q) (pylife.materiallaws.hookeslaw.HookesLaw3d
method), 104
strain() (pylife.materiallaws.RambergOsgood
method), 106
stress() (pylife.materiallaws.hookeslaw.HookesLaw1d
method), 101
stress() (pylife.materiallaws.hookeslaw.HookesLaw2dPlaneStrain
method), 102

(in module

(in module

module

(in

(in module

Index

171

pyLife Documentation, Release 2.0.0

stress() (pylife.materiallaws.hookeslaw.HookesLaw2dPlanaltress to

method), 103
stress() (pylife.materiallaws.hookeslaw.HookesLaw3d
method), 105
stress() (pylife.materiallaws.RambergOsgood
method), 107
StressTensorEquistress
pylife.stress.equistress), 80
StressTensorVoigt (class in pylife.stress.stresssignal),
93

(class in

T

tangential_compliance()
(pylife.materiallaws.RambergOsgood method),
107

tangential_modulus ()
(pylife.materiallaws.RambergOsgood method),
107

ThreePointDetector (class in pylife.stress.rainflow),
84

TimeSignalGenerator
pylife.stress.timesignal), 93

TN (pylife.materiallaws.WoehlerCurve property), 107

to_frame () (pylife.vmap.VMAPImport method), 134

to_pandas() (pylife.materiallaws. WoehlerCurve
method), 112

to_pandas () (pylife.mesh.Mesh method), 126

to_pandas () (pylife.mesh.PlainMesh method), 122

to_pandas () (pylife.PylifeSignal method), 75

transform() (pylife.strength.meanstress.HaighDiagram
method), 98

transform_to_failure_probability()
(pylife.materiallaws. WoehlerCurve
112

tresca() (in module pylife.stress.equistress), 83

tresca() (pylife.stress.equistress.StressTensorEquistress
method), 80

true_fracture_strain() (in module
pylife.materiallaws.true_stress_strain), 113

true_fracture_stress() (in module
pylife.materiallaws.true_stress_strain), 113

true_strain() (in module
pylife. materiallaws.true_stress_strain), 113

true_stress() (in module
pylife.materiallaws.true_stress_strain), 113

try_get_geometry_set() (pylife.vmap.VMAPImport
method), 134

try_get_vmap_object()
method), 134

TS (pylife.materiallaws.WoehlerCurve property), 107

Vv

values_from (pylife.stress.rainflow.LoopValueRecorder
property), 90

(class in

method),

(pylife.vmap. VMAPImport

(pylife.stress.rainflow.LoopValueRecorder
property), 90

variable_column_names() (pylife.vmap.VMAPExport
method), 136

variable_location()
method), 136

variables() (pylife.vmap.VMAPImport method), 134

VMAPExport (class in pylife.vmap), 134

VMAPImport (class in pylife.vmap), 130

vtk_data(Q) (pylife.mesh.Mesh method), 126

W

WoehlerCurve (class in pylife.materiallaws), 107

(pylife.vmap.VMAPExport

172

Index

	pyLife – a general library for fatigue and reliability
	Purpose of the project
	Status
	Contents
	License

	Installation / Getting started
	Just a glimpse
	Installation to use pyLife
	Prerequisites
	Using anaconda
	Using virtualenv
	Using the python installation of your Linux distribution

	pip install

	Installation to develop pyLife
	Clone the git repository
	Install the dependencies
	Test the installation

	Tutorials
	The WoehlerCurve data structure
	The very basic Wöhler curve data
	Optional parameters
	The second slope k_2
	The failure probability and the scatter values TN and TS.

	Load Collectives and Load Histograms
	A simple load signal
	Working with load collectives and load histograms
	A more complex example

	The concept of stress and strength
	Material laws
	Damage sums
	Broadcasting to a FEM mesh

	pyLife User guide
	Overview
	Fitting material data
	Predicting material behavior
	Analyzing load collectives and stresses
	Lifetime assessment of components
	Mesh operations
	VMAP interface
	Utilities

	General Concepts
	The Data Model of pyLife
	Dimensionality of data

	The pyLife Signal API
	Motivation
	The basic concept
	How to use predefined signal accessors
	Example for validation
	Example for accessing a property

	Defining your own signal accessors
	Performing additional validation

	Defining your own signals
	Additional attributes in your own signals

	Registering a method to an existing accessor class

	The Signal Broadcaster
	Motivation
	Example

	Usage

	pyLife Cookbook
	Life time Calculation
	Stress derivation
	Damage Calculation
	Local stress approach
	Meanstress transformation
	Repeating factor
	Nominal stress approach

	Material parameters
	Damage Calculation

	Plot the damage vs collectives
	Without field scatter
	With field scatter
	FE based failure probability calculation
	FE Data
	Damage Calculation
	Failure probability of the plate

	Ramberg Osgood relation
	Initialize the RambergOsgood class
	Calculate the monotone branch
	Calculate the cyclic branch

	Wöhler analyzing functions
	Data import
	Data is made up of two columns:
	Guessing the fractures

	Analysis
	Genaral preparations
	Elementary analysis
	Probit
	Maximum Likelihood Infinite
	Maximum Likelihood Full
	Maximum Likelihood Full with fixed parameters

	Hotspot calculation demo
	Equivalent stress calculation
	Hot spot Calculation
	First hotspot

	Stress gradient calculation
	Local stress approach
	FE based failure probability calculation
	FE Data

	VMAP
	Now we want to apply the collectives to the mesh
	Define the material parameters
	Damage Calculation

	ANSYS

	PSD Optimizer
	Time series handling
	Time series signal
	Filtering
	Running statistics
	Rainflow
	PSD combinig
	Saving

	pyLife Reference
	General
	pyLife core

	Stress
	The pyLife stress subpackage
	The equistress module
	Equivalent Stresses

	The rainflow module
	Overview over pyLife’s rainflow counting module
	Detectors
	Recorders

	API Documentation
	Detectors
	The ThreePointDetector class
	The FourPointDetector class
	The FKMDetector class

	Recorders
	The LoopValueRecorder class
	The FullRecorder class
	The AbstractRecorder class

	Utility functions
	Compatibility

	The LoadCollective class
	The LoadHistogram class
	The stresssignal module
	The timesignal module
	The frequencysignal module

	Strength
	The Fatigue class
	The meanstress module
	Meanstress routines
	Mean stress transformation methods

	The FailureProbability class
	The miner module
	Implementation of the miner rule for fatigue analysis

	Materiallaws
	The hookeslaw module
	The RambergOsgood class
	The WoehlerCurve class
	The true_stress_strain module

	Materialdata
	The woehler module
	Module description
	The woehler module overview
	Overview

	Fatigue data handling
	The FatigueData class

	Analyzers
	The Elementary class
	The Probit class
	The MaxLikeInf class
	The MaxLikeFull class
	The Bayesian class

	Helpers
	The pearl_chain module
	The likelihood module

	Mesh utilities
	The mesh module
	Overview
	The signal classes
	The PlainMesh class
	The Mesh class

	The HotSpot class
	The Gradient class
	The Meshmapper class

	VMAP Interface
	VMAP interface for pyLife
	Reading a VMAP file
	Supported features
	Geometry
	Field variables

	The VMAPImport Class

	Writing a VMAP file
	The VMAPExport Class

	Utils
	The utils.functions module
	Utility Functions

	The histogram module
	The utils.probability_data moduble

	What is new and what has changed in pyLife-2.0
	General changes
	New features
	Rainflow counting

	Restructuring the code
	Changes that affect your code
	Variable names

	Contributing
	Test driven development
	Coding style
	Docstrings
	Comments

	Making commits
	Configure your git client
	Writing good commit messages

	Branching and pull requests
	License
	Add / retain copyright notices
	Sign your work
	Individual vs. Corporate Contributors

	Maintain Copyright holder / Contributor list

	pyLife coding style guidelines
	Introduction
	Clean code

	Use a linter and let your editor help you
	Line lengths
	Naming conventions
	Mandatory names throughout the pyLife code base
	Module names
	Class names
	Function names
	Variable names
	Class method names

	Structuring of the code
	Data encapsulation
	Object orientation
	Functions and methods
	Commenting

	pyLife’s variable name conventions
	Preamble
	General rules
	Letters
	Indices

	Variable names
	Stress values
	Coordinate values
	Displacement values
	Strength variables

	Authors
	License
	3rd Party Licenses
	Indices and tables
	Python Module Index
	Index

